【題目】設函數f(x)=(x﹣a)|x﹣a|+b,a,b∈R,則下列敘述中,正確的序號是( ) ①對任意實數a,b,函數y=f(x)在R上是單調函數;
②對任意實數a,b,函數y=f(x)在R上都不是單調函數;
③對任意實數a,b,函數y=f(x)的圖象都是中心對稱圖象;
④存在實數a,b,使得函數y=f(x)的圖象不是中心對稱圖象.
A.①③
B.②③
C.①④
D.③④
【答案】A
【解析】解:設函數g(x)=x|x|即g(x)= ,作出g(x)的圖象,得出g(x)在R上是單調增函數,且圖象關于原點對稱,
而f(x)=(x﹣a)|x﹣a|+b的圖象可由函數y=g(x)的圖象先向左(a<0)或向右(a>0)平移|a|個單位,
再向上(b>0)或向下(b<0)平移|b|個單位得到.
所以對任意的實數a,b,都有f(x)在R上是單調增函數,且圖象關于點(a,b)對稱.
故選:A
【考點精析】通過靈活運用函數的圖象,掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值即可以解答此題.
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,下列結論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函數f(x)在x=0處有極值,求a的值及f(x)的單調區間
(2)若存在實數x0∈(0, ),使得f(x0)<0,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知中心在原點,焦點在x軸上的橢圓的一個焦點為( ,0),(1,
)是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設橢圓的上、下頂點分別為A,B,P(x0 , y0)(x0≠0)是橢圓上異于A,B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l:y=﹣1于點C,N為線段BC的中點,如果△MON的面積為 ,求y0的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“大眾創業,萬眾創新”是李克強總理在本屆政府工作報告中向全國人民發出的口號.某生產企業積極響應號召,大力研發新產品,為了對新研發的一批產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數據(xi , yi)(i=1,2,…,6),如表所示:
試銷單價x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產品銷量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知 =80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關關系,求產品銷量y(件)關于試銷單價x(元)的線性回歸方程 ;可供選擇的數據:
,
(Ⅲ)用 表示用(Ⅱ)中所求的線性回歸方程得到的與xi對應的產品銷量的估計值.當銷售數據(xi , yi)對應的殘差的絕對值
時,則將銷售數據(xi , yi)稱為一個“好數據”.現從6個銷售數據中任取3個,求“好數據”個數ξ的分布列和數學期望E(ξ).
(參考公式:線性回歸方程中 ,
的最小二乘估計分別為
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x+ |+a|x﹣
|.
(Ⅰ)當a=﹣1時,解不等式f(x)≤3x;
(Ⅱ)當a=2時,若關于x的不等式2f(x)+1<|1﹣b|的解集為空集,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位280名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
(I)現要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第1,2,3組的員工人數分別是多少?
(II)為了交流讀書心得,現從上述12人中再隨機抽取3人發言,設3人中年齡在[35,40)的人數為ξ,求ξ的數學期望;
(III)為了估計該單位員工的閱讀傾向,現對從該單位所有員工中按性別比例抽取的40人做“是否喜歡閱讀國學類書籍”進行調查,調查結果如下表所示:(單位:人)
喜歡閱讀國學類 | 不喜歡閱讀國學類 | 合計 | |
男 | 14 | 4 | 18 |
女 | 8 | 14 | 22 |
合計 | 22 | 18 | 40 |
根據表中數據,我們能否有99%的把握認為該單位員工是否喜歡閱讀國學類書籍和性別有關系?
附: ,其中n=a+b+c+d
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com