精英家教網 > 高中數學 > 題目詳情

(09年東城區期末文)(13分)

設函數.

(Ⅰ)當時,求曲線在點處的切線的方程;

(Ⅱ)當時,求函數的單調增區間和極小值.

解析:(Ⅰ)當時,=,得,

,得.                       …………4分

所以,曲線在點處的切線方程是,整理得

.                                            ………..6分

(Ⅱ),

  .

解得.                        …………….10分

由于,當變化時,的取值情況如下表:

0

+

0

因此函數的單調增區間是,

且函數處取得極小值.                   ……….………..13分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年東城區期末文)(14分)

已知點N)都在函數的圖象上.

(Ⅰ)若數列是等差數列,求證數列為等比數列;

(Ⅱ)若數列的前項和為=,過點的直線與兩坐標軸所圍成三角

    形面積為,求使N恒成立的實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年東城區期末文)(14分)

如圖,在直三棱柱中,,中點.

(Ⅰ)求證:;

(Ⅱ)求證: ∥平面 ;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年東城區期末文)(13分)

北京的高考數學試卷共有8道選擇題,每個選擇題都給了4個選項(其中有且僅有一個是正確的).評分標準規定:每題只選1項,答對得5分,不答或答錯得0分.某考生每道題都給出了答案,已確定有4道題的答案是正確的,而其余的題中,有兩道題每題都可判斷其兩個選項是錯誤的,有一道題可以判斷其一個選項是錯誤的,還有一道題因不理解題意只能亂猜.對于這8道選擇題,試求:

(Ⅰ)該考生得分為40分的概率;

(Ⅱ)通過計算說明,該考生得多少分的可能性最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年東城區期末文)(13分)

已知函數.

(Ⅰ)求的最小正周期及單調減區間;

(Ⅱ)若,求的最大值和最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视