精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,

)求的值.

)求函數在區間上的最大值和最小值,及相應的的值.

)求函數在區間的單調區間.

【答案】時, 時, .(上,

單調增區間,單調減區間

【解析】試題分析:利用兩角和與差的余弦公式,二倍角公式化簡,則即得解 ,結合正弦函數圖像得,則及在區間上的最大值和最小值,及相應的對應值易得解,

由正弦函數圖象知,當時,即時, 單調遞減,當時,即時, 單調遞增,則在區間的單調區間得解.

試題解析:

,

,

,

,

,

時, ,

此時,

時, ,,

此時

,

,

由正弦函數圖象知,

時,

時, 單調遞減,

時,

時, 單調遞增.

單調減區間為,

單調增區間為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】今有一組數據如下表:

1

2

3

4

5

6

4

5

6

7

8

9

90

84

83

m

75

68

由最小二乘法求得點 的回歸直線方程是,其中.

(Ⅰ)求m的值,并求回歸直線方程;

(Ⅱ)設,我們稱為點的殘差,記為.

從所給的點 中任取兩個,求其中有且只有一個點的殘差絕對值不大于1的概率.

參考公式: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:極坐標與參數方程

在極坐標系中,已直曲線,將曲線C上的點向左平移一個單位,然后縱坐標不變,橫坐標伸長到原來的2倍,得到曲線C1,又已知直線,且直線C1交于AB兩點,

1求曲線C1的直角坐標方程,并說明它是什么曲線;

2)設定點, 求的值;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列是正整數的任一排列,且同時滿足以下兩個條件:

;②當時, ().

記這樣的數列個數為.

(I)寫出的值;

(II)證明不能被4整除.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線Cy2=2px(p>0)的焦點F與橢圓Γy2=1的一個焦點重合,M(x0,2)在拋物線上,過焦點F的直線l交拋物線于AB兩點

()求拋物線C的方程以及|MF|的值;

()記拋物線C的準線與x軸交于點H,試問是否存在常數λR,使得|HA|2+|HB|2都成立?若存在,求出實數λ的值; 若不存在請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , , ,側面底面.

(1)求證:平面平面;

(2)若,且三棱錐的體積為,求側面的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

)當為自然對數的底數)時,求的極小值;

Ⅱ)若函數存在唯一零點,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的偶函數f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數,給出下列四個命題:

f(x)是周期函數;②f(x)的圖象關于x=1對稱;③f(x)在[1,2]上是減函數;④f(2)=f(0).

其中正確命題的序號是____________.(請把正確命題的序號全部寫出來)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內,則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數分布表,圖1是乙套設備的樣本的頻率分布直方圖.

表1:甲套設備的樣本的頻數分布表

質量指標值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數

1

4

19

20

5

1

圖1:乙套設備的樣本的頻率分布直方圖

(1)填寫下面列聯表,并根據列聯表判斷是否有90%的把握認為該企業生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關;

甲套設備

乙套設備

合計

合格品

不合格品

合計

,求的期望.

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

.

查看答案和解析>>
久久精品免费一区二区视