【題目】若函數的圖像與曲線
恰好有兩個不同的公共點,則實數
的取值范圍是( )
A.B.
C.
D.
【答案】A
【解析】
利用絕對值的幾何意義,由y=|x|﹣1可得,x≥0時,y=x﹣1;x<0時,y=﹣x﹣1,確定函數y=|x|﹣1的圖象與方程x2+λy2=1的曲線必相交于(±1,0),為了使函數y=|x|﹣1的圖象與方程x2+λy2=1的曲線恰好有兩個不同的公共點,則兩曲線無其它交點.y=x﹣1代入方程x2+λy2=1,整理可得(1+λ)x2﹣2λx+λ﹣1=0,分類討論,可得結論,根據對稱性,同理可得x<0時的情形.
由y=|x|﹣1可得,x≥0時,y=x﹣1;x<0時,y=﹣x﹣1,
∴函數y=|x|﹣1的圖象與方程x2+λy2=1的曲線必相交于(±1,0)
所以為了使函數y=|x|﹣1的圖象與方程x2+λy2=1的曲線恰好有兩個不同的公共點,則
y=x﹣1代入方程x2+λy2=1,整理可得(1+λ)x2﹣2λx+λ﹣1=0
當λ=﹣1時,x=1滿足題意,
由于△>0,1是方程的根,∴0,即﹣1<λ<1時,方程兩根異號,滿足題意;
y=﹣x﹣1代入方程x2+λy2=1,整理可得(1+λ)x2+2λx+λ﹣1=0
當λ=﹣1時,x=﹣1滿足題意,
由于△>0,﹣1是方程的根,∴0,即﹣1<λ<1時,方程兩根異號,滿足題意;
綜上知,實數λ的取值范圍是[﹣1,1)
故選:A.
科目:高中數學 來源: 題型:
【題目】若存在實數使得
則稱
是區間
的
一內點.
(1)求證:的充要條件是存在
使得
是區間
的
一內點;
(2)若實數滿足:
求證:存在
,使得
是區間
的
一內點;
(3)給定實數,若對于任意區間
,
是區間的
一內點,
是區間的
一內點,且不等式
和不等式
對于任意
都恒成立,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人各進行次射擊,甲每次擊中目標的概率為
,乙每次擊中目標的概率
,
(Ⅰ)記甲擊中目標的次數為,求
的概率分布及數學期望;
(Ⅱ)求甲恰好比乙多擊中目標次的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A. “”是“
”成立的充分不必要條件
B. 命題,則
C. 為了了解800名學生對學校某項教改試驗的意見,用系統抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40
D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形且∠DAB=60°,O為AD中點.
(Ⅰ)若PA=PD,求證:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,試問在線段PC上是否存在點M,使二面角M-BO-C的大小為30°,如存在,求的值,如不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在上的函數
滿足:對任意的
,當
時,都有
.
(1)若,求實數
的取值范圍;
(2)若為周期函數,證明:
是常值函數;
(3)若在
上滿足:
,
,
,
①記(
),求數列
的通項公式;② 求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓和直線
:
,橢圓的離心率
,坐標原點到直線
的距離為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點,若直線
過點
且與橢圓相交于
兩點,試判斷是否存在直線
,使以
為直徑的圓過點
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com