【題目】如圖,四棱錐的底面
是直角梯形,
,
,
,點
在線段
上,且
,
,
平面
.
(1)求證:平面平面
;
(2)當四棱錐的體積最大時,求平面
與平面
所成二面角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:⑴由條件推出四邊形是矩形,得到
,再推出
,
平面
,即可推出平面
平面
⑵要使四棱錐的體積取最大值,只需
取得最大值,當且僅當
時,
取得最大值36,分別以
所在直線為
軸、
軸、
軸建立空間直角坐標系
,利用向量法求出平面
與平面
所成角的余弦值
解析:(1)由可得
,
易得四邊形是矩形,∴
,
又平面
,
平面
,∴
,
又,
平面
,∴
平面
,
又平面
,∴平面
平面
(2)四棱錐的體積為
,
要使四棱錐的體積取最大值,只需
取得最大值.
由條件可得,
∴,即
,
當且僅當時,
取得最大值36.
分別以所在直線為
軸、
軸、
軸建立空間直角坐標系
.
則,
,
,
,
,
,
,
設平面的一個法向量為
,由
,
可得
,令
可得
,
同理可得平面的一個法向量為
,
設平面與平面
所成二面角為
,
.
由于平面與平面
所成角為銳二面角,所以余弦值為
.
科目:高中數學 來源: 題型:
【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進米粉,然后以4.4元/碗的價格出售,每碗內含米粉0.2斤,如果當天賣不完,剩下的米粉以2元/斤的價格賣給養豬場.根據以往統計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進了80斤米粉,以(斤)(其中
)表示米粉的需求量,
(元)表示利潤.
(1)估計該天食堂利潤不少于760元的概率;
(2)在直方圖的需求量分組中,以區間中間值作為該區間的需求量,以需求量落入該區間的頻率作為需求量在該區間的概率,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中點在原點,焦點在
軸上,離心率
,以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為
.
(1)求橢圓的方程;
(2)過原點的兩條直線
,
,交橢圓
于
,
,
,
四點,若
,求四邊形
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),將曲線
上各點的橫坐標都縮短為原來的
倍,縱坐標坐標都伸長為原來的
倍,得到曲線
,在極坐標系(與直角坐標系
取相同的單位長度,且以原點
為極點,以
軸非負半軸為極軸)中,直線
的極坐標方程為
.
(1)求直線和曲線
的直角坐標方程;
(2)設點是曲線
上的一個動點,求它到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市縣鄉教師流失現象非常嚴重,為了縣鄉孩子們能接受良好教育,某市今年要為兩所縣鄉中學招聘儲備未來三年的教師,現在每招聘一名教師需要1萬元,若三年后教師嚴重短缺時再招聘,由于各種因素,則每招聘一名教師需要3萬元,已知現在該市縣鄉中學無多余教師,為決策應招聘多少縣鄉教師搜集并整理了該市50所縣鄉中學在過去三年內的教師流失數,得到如表的頻率分布表:
流失教師數 | 6 | 7 | 8 | 9 |
頻數 | 10 | 15 | 15 | 10 |
以這50所縣鄉中學流失教師數的頻率代替一所縣鄉中學流失教師數發生的概率,記表示兩所縣鄉中學在過去三年共流失的教師數,
表示今年為兩所縣鄉中學招聘的教師數.為保障縣鄉孩子教育不受影響,若未來三年內教師有短缺,則第四年馬上招聘.
(1)求的分布列;
(2)若要求,確定
的最小值;
(3)以未來四年內招聘教師所需費用的期望值為決策依據,在與
之中選其一,應選用哪個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A. 設隨機變量,則
B. 線性回歸直線不一定過樣本中心點
C. 若兩個隨機變量的線性相關性越強,則相關系數的值越接近于1
D. 先把高三年級的2000名學生編號:1到2000,再從編號為1到50的50名學生中隨機抽取1名學生,其編號為,然后抽取編號為
,
,
,……的學生,這樣的抽樣方法是分層抽樣
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雞的產蛋量與雞舍的溫度有關,為了確定下一個時段雞舍的控制溫度,某企業需要了解雞舍的溫度 (單位:
),對某種雞的時段產蛋量
(單位:
) 和時段投入成本
(單位:萬元)的影響,為此,該企業收集了7個雞舍的時段控制溫度
和產蛋量
的數據,對數據初步處理后得到了如圖所示的散點圖和表中的統計量的值.
其中.
(1)根據散點圖判斷,與
哪一個更適宜作為該種雞的時段產蛋量
關于雞舍時段控制溫度
的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據表中數據,建立
關于
的回歸方程;
(3)已知時段投入成本與
的關系為
,當時段控制溫度為
時,雞的時段產蛋量及時段投入成本的預報值分別是多少?
附:①對于一組具有線性相關關系的數據,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知空間幾何體中,
與
均為邊長為
的等邊三角形,
為腰長為
的等腰三角形,平面
平面
,平面
平面
.
(Ⅰ)試在平面內作一條直線,使得直線上任意一點
與
的連線
均與平面
平行,并給出詳細證明;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產品層出不窮.某公司隨即抽取人對共享產品是否對日常生活有益進行了問卷調查,并對參與調查的
人中的性別以及意見進行了分類,得到的數據如下表所示:
男 | 女 | 總計 | |
認為共享產品對生活有益 | |||
認為共享產品對生活無益 | |||
總計 |
(1)根據表中的數據,能否在犯錯誤的概率不超過的前提下,認為對共享產品的態度與性別有關系?
(2)現按照分層抽樣從認為共享產品增多對生活無益的人員中隨機抽取人,再從
人中隨機抽取
人贈送超市購物券作為答謝,求恰有
人是女性的概率.
參與公式:
臨界值表:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com