【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設PC與平面ABCD所成的角的正弦為,AP=1,AD=
,求三棱錐E-ACD的體積.
科目:高中數學 來源: 題型:
【題目】關于旋轉體的體積,有如下的古爾丁(guldin)定理:“平面上一區域D繞區域外一直線(區域D的每個點在直線的同側,含直線上)旋轉一周所得的旋轉體的體積,等于D的面積與D的幾何中心(也稱為重心)所經過的路程的乘積”.利用這一定理,可求得半圓盤,繞直線x
旋轉一周所形成的空間圖形的體積為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為菱形,頂點
在底面
的射影恰好是菱形
對角線的交點
,且
,
,
,
,其中
.
(1)當時,求證:
;
(2)當與平面
所成角的正弦值為
時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機器生產商,對一次性購買兩臺機器的客戶推出兩種超過質保期后兩年內的延保維修方案:
方案一:交納延保金元,在延保的兩年內可免費維修
次,超過
次每次收取維修費
元;
方案二:交納延保金元,在延保的兩年內可免費維修
次,超過
次每次收取維修費
元.
某工廠準備一次性購買兩臺這種機器,現需決策在購買機器時應購買哪種延保方案,為此搜集并整理了臺這種機器超過質保期后延保兩年內維修的次數,統計得下表:
維修次數 | 0 | 1 | 2 | 3 |
機器臺數 | 20 | 10 | 40 | 30 |
以上臺機器維修次數的頻率代替一臺機器維修次數發生的概率,記
表示這兩臺機器超過質保期后延保兩年內共需維修的次數.
求
的分布列;
以所需延保金與維修費用之和的期望值為決策依據,該工廠選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中,邊
,
,令
,
,
,過
邊上一點
(異于端點)引邊
的垂線
,垂足為
,再由
引邊
的垂線
,垂足為
,又由
引邊
的垂線
,垂足為
,同樣的操作連續進行,得到點列
、
、
,設
(
);
(1)求;
(2)結論“”是否正確?請說明理由;
(3)若對于任意,不等式
恒成立,求
的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的焦距為
,點
在橢圓
上,且
的最小值是
(
為坐標原點).
(1)求橢圓的標準方程.
(2)已知動直線與圓
:
相切,且與橢圓
交于
,
兩點.是否存在實數
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com