精英家教網 > 高中數學 > 題目詳情
精英家教網如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,△PAD為等邊三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E為AD的中點.
(1)求證:AD⊥PB;
(2)求點E到平面PBC的距離.
分析:(1)連接PE、EB、BD,分別在等邊△PAD和等邊△BAD中利用“三線合一”,證出PE⊥AD且BE⊥AD,結合線面垂直判定定理證出AD⊥平面PBE,從而可得AD⊥PB;
(2)過E作EF⊥PB于F,利用面面垂直的性質定理和線面垂直的判定與性質,證出EF⊥平面PBC,得EF長就是點E到平面PBC的距離.根據題中數據算出Rt△PEB中各邊之長,利用直角三角形的面積公式算出EF的長,即得點E到平面PBC的距離.
解答:解:(1)連接PE、EB、BD,
∵△PAD為等邊三角形,E為AD的中點,∴PE⊥AD…(2分)
∵四邊形ABCD為菱形,且∠DAB=60°,E為AD的中點,
∴BE⊥AD…(4分)
∵PE∩BE=E,∴AD⊥平面PBE,
∵PB?平面PBE,∴AD⊥PB…(6分)
(2)過E作EF⊥PB于F
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PE?平面PAD,PE⊥AD
∴PE⊥平面ABCD,精英家教網
∵BC?平面ABCD,∴PE⊥BC
∵菱形ABCD中,AD∥BC,BE⊥AD,∴BE⊥BC
∵PE、BE是平面PBE內的相交直線,∴BC⊥平面PBE
∵EF?平面PBE,∴BC⊥EF,
∵EF⊥PB且PB∩BC=B,∴EF⊥平面PBC,得EF長就是點E到平面PBC的距離
∵△ADB、△ADP是邊長為2的等邊三角形,
∴Rt△PEB中,PE=BE=
3
2
AD
=
3
,得PB=
2
BE
=
6

由此可得:EF=
PE•EB
PB
=
6
2
,即點E到平面PBC的距離等于
6
2
.…(12分)
點評:本題在四棱錐中證明線線垂直,并求點到平面的距離.著重考查了面面垂直性質定理、線面垂直的判定與性質,考查了等邊三角形的性質和點到平面距離求法等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示,在四棱錐P-ABCD中,側面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,M為PC上一點,且PA∥平面BDM.
(1)求證:M為PC中點;
(2)求平面ABCD與平面PBC所成的銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點M在PB上,PB=4PM,PB與平面ABCD成30°的角.
(1)求證:CM∥平面PAD;
(2)點C到平面PAD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廣東)如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1)證明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是正方形,PD⊥平面ABCD,E為PC的中點.
求證:
(1)PA∥平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=2AB=2,M為PD上的點,若PD⊥平面MAB
(I)求證:M為PD的中點;
(II)求二面角A-BM-C的大。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视