【題目】關于的方程
恰有3個實數根
,
,
,則
__________.
【答案】2
【解析】
令f(x)=x2+arcsin(cosx)+a,判斷f(x)的奇偶性,由題意可得f(0)=0,求得a,再由反三角函數的定義和性質,化簡函數,求得f(x)=0的解,即可得到所求和.
令f(x)=x2+arcsin(cosx)+a,
可得f(﹣x)=(﹣x)2+arcsin(cos(﹣x))+a=f(x),
則f(x)為偶函數,
∵f(x)=0有三個實數根,
∴f(0)=0,即0a=0,故有a
,
關于x的方程即x2+arcsin(cosx)0,
可設=0,
且2+arcsin(cos
)
0,
2+arcsin(cos
)
0,
=﹣
,
由y=x2和yarcsin(cosx),
當x>0,且0<x<π時,yarcsin(cosx)
arcsin(sin(
x))
(
x))=x,
則﹣π<x<0時,yarcsin(cosx)=﹣x,
由y=x2和yarcsin(cosx)的圖象可得:
它們有三個交點,且為(0,0),(﹣1,1),(1,1),
則2+
2+
2=0+1+1=2.
故答案為:2.
科目:高中數學 來源: 題型:
【題目】如上圖所示,在正方體中,
分別是棱
的中點,
的頂點
在棱
與棱
上運動,有以下四個命題:
A.平面
; B.平面
⊥平面
;
C.
在底面
上的射影圖形的面積為定值;
D.
在側面
上的射影圖形是三角形.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為
,且過點P
。
(1)求橢圓的標準方程;
(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知菱形與直角梯形
所在的平面互相垂直,其中
,
,
,
,
為
的中點
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設為線段
上一點,
,若直線
與平面
所成角的正弦值為
,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點在拋物線
的準線上,且橢圓的短軸長為2,
分別為橢圓的左,右焦點,
分別為橢圓的左,右頂點,設點
在第一象限,且
軸,連接
交橢圓于點
,直線
的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形
的面積,求
的值;
(Ⅲ)設點為
的中點,射線
(
為原點)與橢圓交于點
,滿足
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點在平行于
軸的直線
上,且
與
軸的交點為
,動點
滿足
平行于
軸,且
.
(1)求出點的軌跡方程.
(2)設點,
,求
的最小值,并寫出此時
點的坐標.
(3)過點的直線與
點的軌跡交于
.
兩點,求證
.
兩點的橫坐標乘積為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com