【題目】醫院用甲、乙兩種原料為手術后的病人配營養餐,甲種原料每10g含5單位蛋白質和10單位鐵質,售價3元;乙種原料每10g含7單位蛋白質和4單位鐵質,售價2元,若病人每餐至少需要35單位蛋白質和40單位鐵質。試問:應如何使用甲、乙原料,才能既滿足營養,又使費用最省?
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x2+(a+1)x+2ln(x﹣1).
(1)若曲線y=f(x)在點(2,f(2))處的切線與直線2x﹣y+1=0平行,求出這條切線的方程;
(2)討論函數f(x)的單調區間;
(3)若對于任意的x∈(1,+∞),都有f(x)<﹣2,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,將
的圖象向右平移兩個單位長度,得到函數
的圖象.
(1)求函數的解析式;
(2)若方程在
上有且僅有一個實根,求
的取值范圍;
(3)若函數與
的圖象關于直線
對稱,設
,已知
對任意的
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設斜率不為0的直線與拋物線
交于
兩點,與橢圓
交于
兩點,記直線
的斜率分別為
.
(1)求證:的值與直線
的斜率的大小無關;
(2)設拋物線的焦點為
,若
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)當a=0時,求f(x)的單調區間;
(2)若函數f(x)在其定義域內有兩個不同的極值點.
(。┣骯的取值范圍;
(ⅱ)設兩個極值點分別為x1 , x2 , 證明:x1x2>e2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C1的參數方程為 (θ為參數),曲線 C2的極坐標方程為ρcosθ﹣
ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標方程;
(2)設P為曲線C1上一點,Q為曲線 C2上一點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在(0, )上的函數f(x),f′(x)為其導函數,且f(x)<f′(x)tanx恒成立,則( )
A. f(
)>
f(
)
B. f(
)<f(
)??
C. f(
)>f(
)
D.f(1)<2f( )?sin1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,F為橢圓E:的右焦點,過F作兩條相互垂直的直線AB,CD,與橢圓E分別交于A,B和點C,D.
(1)當AB=時,求直線AB的方程;
(2)直線AB交直線x=3于點M,OM與CD交于P,CO與橢圓E交于Q,求證:OM∥DQ.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com