【題目】某市為了增強民眾防控病毒的意識,舉行了“預防新冠病毒知識競賽”網上答題,隨機抽取人,答題成績統計如圖所示.
(1)由直方圖可認為答題者的成績服從正態分布
,其中
,
分別為答題者的平均成績
和成績的方差
,那么這
名答題者成績超過
分的人數估計有多少人?(同一組中的數據用該組的區間中點值作代表)
(2)如果成績超過分的民眾我們認為是“防御知識合格者”,用這
名答題者的成績來估計全市的民眾,現從全市中隨機抽取
人,“防御知識合格者”的人數為
,求
.(精確到
)
附:①,
;②
,則
,
;③
,
.
科目:高中數學 來源: 題型:
【題目】設命題對任意
,不等式
恒成立;命題q:存在
,使得不等式
成立.
(1)若p為真命題,求實數m的取值范圍;
(2)若命題p、q有且只有一個是真命題,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為考察某種藥物預防疾病的效果,進行動物試驗,調查了 105 個樣本,統計結果為:服藥的共有 55 個樣本,服藥但患病的仍有 10 個樣本,沒有服藥且未患病的有 30個樣本.
(1)根據所給樣本數據完成 列聯表中的數據;
(2)請問能有多大把握認為藥物有效?
(參考公式:獨立性檢驗臨界值表
概率 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
患病 | 不患病 | 合計 | |
服藥 | |||
沒服藥 | |||
合計 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查某校高二學生的身高是否與性別有關,隨機調查該校64名高二學生,得到2×2列聯表如表:
男生 | 女生 | 總計 | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
總計 | 34 | 30 | 64 |
附:K2
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正確結論是( )
A.在犯錯誤的概率不超過0.01的前提下,認為“身高與性別無關”
B.在犯錯誤的概率不超過0.01的前提下,認為“身高與性別有關”
C.有99.9%的把握認為“身高與性別無關”
D.有99.9%的把握認為“身高與性別有關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年3月智能共享單車項目正式登陸某市,兩種車型“小綠車”、“小黃車”
采用分時段計費的方式,“小綠車”每30分鐘收費
元
不足30分鐘的部分按30分鐘計算
;“小黃車”每30分鐘收費1元
不足30分鐘的部分按30分鐘計算
有甲、乙、丙三人相互獨立的到租車點租車騎行
各租一車一次
設甲、乙、丙不超過30分鐘還車的概率分別為
,
,
,三人租車時間都不會超過60分鐘
甲、乙均租用“小綠車”,丙租用“小黃車”.
求甲、乙兩人所付的費用之和等于丙所付的費用的概率;
2
設甲、乙、丙三人所付的費用之和為隨機變量
,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第35屆牡丹花會期間,我班有5名學生參加志愿者服務,服務場所是王城公園和牡丹公園.
(1)若學生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?
(2)每名學生都被隨機分配到其中的一個公園,設分別表示5名學生分配到王城公園和牡丹公園的人數,記
,求隨機變量
的分布列和數學期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com