精英家教網 > 高中數學 > 題目詳情
數列{an}滿足an=3an-1+3n-1(n≥2)其中a3=95
(1)求a1,a2的值
(2)若存在一個實數λ使得{
an3n
}為等差數列求λ的值
(3)求數列{an}前n項的和Sn
分析:(1)求a1,a2的值,由題設條件,{an}滿足an=3an-1+3n-1(n≥2)其中a3=95求解即可
(2)若存在一個實數λ使得{
an
3n
}為等差數列求λ的值可根據等差數列的性質建立方程求參數;
(3)求數列{an}前n項的和Sn.可以由(2)求出數列{an}的通項,再根據其形式先分組,在各組中分別用錯位相減法求和,公式求和的技巧求和.
解答:解:(1)由題設條件知a2=3a1+31-1,a3=3a2+33-1=95,解得a1=7,a2=23
(2)若存在一個實數λ使得{
an
3n
}為等差數列,則有
a1
31
+
a3
33
=2×
a2
32
,將a1=7,a2=23,a3=95代入解得λ=-5
(3)由(2){
an-5
3n
}為等差數列其首項為
2
3
,公差為
4
3
的等差數列,故
an-5
3n
=
2
3
+
4
3
×(n-1)
=
4
3
n-
2
3
,故an=4n×3n-1-2×3n-1+5
令An為數列{4n×3n-1}的前n項和,則Sn=An-2×(30+31+…+3n-1)+5n=An+1-3n+5n
由于An=4×(1×30+2×31+3×32+…+n×3n-1
3An=4×(1×31+2×32+3×33+…+n×3n
故-2An=4×(30+31+32+…+3n-1-n×3n)=4×(
1
2
×(3n-1)
-n×3n
An=2×(3n-1)+4×(n×3n
所以Sn=2×(3n-1)+4×(n×3n)+1-3n+5n
點評:本題考點是數列的求和,考查了公式法求和以及錯位相減法求和等技巧,學習時要注意積累常見的求和技巧,總結其規律.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•浙江模擬)數列{an}滿足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差數列,求其通項公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)的定義域為R,數列{an}滿足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數列{an}是等差數列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數,n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數列{bn}的前n項和為Sn,對于給定的正整數m,如果
S(m+1)nSmn
的值與n無關,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

若數列{an} 滿足
an+12an2
=p
(p為正常數,n∈N*),則稱{an} 為“等方比數列”.則“數列{an} 是等方比數列”是“數列{an} 是等比數列”的
必要非充分
必要非充分
條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浦東新區二模)數列{an}滿足an+1=
4an-2
an+1
(n∈N*).
①存在a1可以生成的數列{an}是常數數列;
②“數列{an}中存在某一項ak=
49
65
”是“數列{an}為有窮數列”的充要條件;
③若{an}為單調遞增數列,則a1的取值范圍是(-∞,-1)∪(1,2);
④只要a1
3k-2k+1
3k-2k
,其中k∈N*,則
lim
n→∞
an
一定存在;
其中正確命題的序號為
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇二模)已知各項均為正整數的數列{an}滿足an<an+1,且存在正整數k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)當k=3,a1a2a3=6時,求數列{an}的前36項的和S36
(2)求數列{an}的通項an;
(3)若數列{bn}滿足bnbn+1=-21•(
12
)an-8
,且b1=192,其前n項積為Tn,試問n為何值時,Tn取得最大值?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视