【題目】設分別是橢圓
的左、右焦點,過
且斜率不為零的直線
與橢圓
交于
兩點,
的周長為
(1)求橢圓的方程
(2)是否存在直線,使得
為等腰直角三角形?若存在,求出直線的方程;若不存在,請說明理由
【答案】(1);(2)不存在,見解析.
【解析】
(1)根據焦點坐標得,
的周長為
,即
,即可解得橢圓
的方程;
(2)分別討論將作為等腰直角三角形的斜邊和直角邊(即底邊和腰)的情況,即可得出矛盾.
(1)由題橢圓的焦點坐標,所以
,
的周長為
,即
,
,
,
所以橢圓的方程為;
(2)不存在,理由如下:
當為底邊時,
,根據橢圓對稱性,此時直線垂直于
軸,其方程
,
此時,
,
所以不垂直,即
為底邊時等腰
頂角不為直角,所以不是等腰直角三角形;
當為腰時,必有
,
假設為等腰直角三角形,不妨設
為直角頂點,設
,
則,在
中,由勾股定理,
,
即,解得:
,此時
,
與矛盾,所以不是等腰直角三角形,
綜上所述,不存在直線,使得
為等腰直角三角形
科目:高中數學 來源: 題型:
【題目】過拋物線外一點M作拋物線的兩條切線,兩切點的連線段稱為點M對應的切點弦已知拋物線為,點P,Q在直線l:
上,過P,Q兩點對應的切點弦分別為AB,CD
當點P在l上移動時,直線AB是否經過某一定點,若有,請求出該定點的坐標;如果沒有,請說明理由
當
時,點P,Q在什么位置時,
取得最小值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系內,已知點及線段
,在線段
上任取一點
,線段
長度的最小值稱為“點
到線段
的距離”,記為
.
(1)設點,線段
,求
;
(2)設,
,
,
,線段
,線段
,若點
滿足
,求
關于
的函數解析式,并寫出該函數的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,右頂點為
,且
過點
,圓
是以線段
為直徑的圓,經過點
且傾斜角為
的直線與圓
相切.
(1)求橢圓及圓
的方程;
(2)是否存在直線,使得直線
與圓
相切,與橢圓
交于
兩點,且滿足
?若存在,請求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線=1(b∈N)的兩個焦點F1、F2,P為雙曲線上一點,|OP|<5,|PF1|,|F1F2|,|PF2|成等比數列,則b2=_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過多年的運作,“雙十一”搶購活動已經演變成為整個電商行業的大型集體促銷盛宴.為迎接2018年“雙十一”網購狂歡節,某廠家擬投入適當的廣告費,對網上所售產品進行促銷.經調查測算,該促銷產品在“雙十一”的銷售量p萬件與促銷費用x萬元滿足(其中
,a為正常數).已知生產該產品還需投入成本
萬元(不含促銷費用),每一件產品的銷售價格定為
元,假定廠家的生產能力完全能滿足市場的銷售需求.
(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數;
(2)促銷費用投入多少萬元時,廠家的利潤最大?并求出最大利潤的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,且經過點
,
,
,
,
為橢圓的四個頂點(如圖),直線
過右頂點
且垂直于
軸.
(1)求該橢圓的標準方程;
(2)為
上一點(
軸上方),直線
,
分別交橢圓于
,
兩點,若
,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知
是曲線
:
上的動點,將
繞點
順時針旋轉
得到
,設點
的軌跡為曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線,
的極坐標方程;
(2)在極坐標系中,點,射線
與曲線
,
分別相交于異于極點
的
兩點,求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com