【題目】已知函數,其中
.
(1)試討論函數的單調性及最值;
(2)若函數不存在零點,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某大學的名學生進行問卷調查,并把所得數據列成如下所示的頻數分布表:
組別 | |||||
頻數 |
(Ⅰ)求所得樣本的中位數(精確到百元);
(Ⅱ)根據樣本數據,可近似地認為學生的旅游費用支出服從正態分布
,若該所大學共有學生
人,試估計有多少位同學旅游費用支出在
元以上;
(Ⅲ)已知樣本數據中旅游費用支出在范圍內的
名學生中有
名女生,
名男生,現想選其中
名學生回訪,記選出的男生人數為
,求
的分布列與數學期望.
附:若,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩個桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(單位:毫米,以下同),按規定直徑在
內為優質品,現從甲、乙兩基地所采摘的桔柚中各隨機抽取500個,測量這些桔柚的直徑,所得數據整理如下:
(1)根據以上統計數據完成下面列聯表,并回答是否有
以上的把握認為
“桔柚直徑與所在基地有關”?
(2)求優質品率較高的基地的500個桔柚直徑的樣本平均數(同一組數據用該區間的中點值作代表):
(3)經計算,甲基地的500個桔柚直徑的樣本方差,乙基地的500個桔柚直徑的樣本方差
,,并且可認為優質品率較高的基地采摘的桔柚直徑
服從正態分布
,其中
近似為樣本平均數
,
近似為樣本方差
.由優質品率較高的種植基地的抽樣數據,估計該基地采摘的桔柚中,直徑不低于86.78亳米的桔柚在總體中所占的比例.
附:,
.
若,則
.
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018海南高三階段性測試(二模)】如圖,在直三棱柱中,
,
,點
為
的中點,點
為
上一動點.
(I)是否存在一點,使得線段
平面
?若存在,指出點
的位置,若不存在,請說明理由.
(II)若點為
的中點且
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,點
在傾斜角為
的直線
上,以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的方程為
.
(1)寫出的參數方程及
的直角坐標方程;
(2)設與
相交于
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】依據某地某條河流8月份的水文觀測點的歷史統計數據所繪制的頻率分布直方圖如圖(甲)所示;依據當地的地質構造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.
試估計該河流在8月份水位的中位數;
(1)以此頻率作為概率,試估計該河流在8月份發生1級災害的概率;
(2)該河流域某企業,在8月份,若沒受1、2級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.
現此企業有如下三種應對方案:
方案 | 防控等級 | 費用(單位:萬元) |
方案一 | 無措施 | 0 |
方案二 | 防控1級災害 | 40 |
方案三 | 防控2級災害 | 100 |
試問,如僅從利潤考慮,該企業應選擇這三種方案中的哪種方案?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為提高黔東南州的整體旅游服務質量,州旅游局舉辦了黔東南州旅游知識競賽,參賽單位為本州內各旅游協會,參賽選手為持證導游.現有來自甲旅游協會的導游3名,其中高級導游2名;乙旅游協會的導游3名,其中高級導游1名.從這6名導游中隨機選擇2人 參加比賽.
(Ⅰ)求選出的2人都是高級導游的概率;
(Ⅱ)為了進一步了解各旅游協會每年對本地經濟收入的貢獻情況,經多次統計得到,甲旅游協會對本地經濟收入的貢獻范圍是(單位:萬元),乙旅游協會對本地經濟收入的貢獻范圍是
(單位:萬元),求甲旅游協會對本地經濟收入的貢獻不低于乙旅游協會對本地經濟收入的貢獻的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com