精英家教網 > 高中數學 > 題目詳情

【題目】已知如圖:平行四邊形ABCD中,BC=6,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.
(1)求證:GH∥平面CDE;
(2)若CD=2,DB=4 ,求四棱錐F﹣ABCD的體積.

【答案】
(1)證明:∵EF∥AD,AD∥BC,∴EF∥BC且EF=AD=BC

∴四邊形EFBC是平行四邊形,∴H為FC的中點

又∵G是FD的中點

∴HG∥CD

∵HG平面CDE,CD平面CDE

∴GH∥平面CDE


(2)解:∵平面ADEF⊥平面ABCD,交線為AD

且FA⊥AD,∴FA⊥平面ABCD.

∵BC=6,∴FA=6

又∵CD=2,DB=4 ,CD2+DB2=BC2

∴BD⊥CD

∴SABCD=CD×BD=8

∴VF﹣ABCD= ×SABCD×FA= × ×6=16


【解析】(1)證明GH∥平面CDE,利用線面平行的判定定理,只需證明HG∥CD;(2)證明FA⊥平面ABCD,求出SABCD,即可求得四棱錐F﹣ABCD的體積.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
(Ⅱ)若點D在邊AC上,且AD=2DC,BD= ,求BC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為40%.現采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產生0到9之間取整數值的隨機數,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數作為一組,代表這三天的下雨情況.經隨機模擬試驗產生了如下20組隨機數: 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,這三天中恰有兩天下雨的概率近似為(
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列{an}中,a1+2a2++22a3+…2n﹣1an=(n2n﹣2n+1)t對任意n∈N*成立,其中常數t>0.若關于n的不等式 + + +…+ 的解集為{n|n≥4,n∈N*},則實數m的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足:對于任意n∈N*且n≥2時,an+λan﹣1=2n+1,a1=4.
(1)若 ,求證:{an﹣3n}為等比數列;
(2)若λ=﹣1.①求數列{an}的通項公式; ②是否存在k∈N*,使得 +25為數列{an}中的項?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點P是圓O:x2+y2=1與x軸正半軸的交點,半徑OA在x軸的上方,現將半徑OA繞原點O逆時針旋轉 得到半徑OB.設∠POA=x(0<x<π),
(1)若 ,求點B的坐標;
(2)求函數f(x)的最小值,并求此時x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一組數據:10.1,9.8,10,x,10.2的平均數為10,則該組數據的方差為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn , 且an=2﹣2Sn , 數列{bn}為等差數列,且b5=14,b7=20.
(1)求數列{an}的通項公式;
(2)若cn=anbn , n∈N* , 求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角△ABC中,sinA=sinBsinC,則tanB+2tanC的最小值是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视