【題目】已知兩個定點,
, 動點
滿足
,設動點
的軌跡為曲線
,直線
:
.
(1)求曲線的軌跡方程;
(2)若與曲線
交于不同的
、
兩點,且
(
為坐標原點),求直線
的斜率;
(3)若,
是直線
上的動點,過
作曲線
的兩條切線
、
,切點為
、
,探究:直線
是否過定點,若存在定點請寫出坐標,若不存在則說明理由.
【答案】(1);(2)
;(3)
.
【解析】
(1)設點的坐標為
,根據
列出方程化簡,即可求解軌跡方程;
(2)依題意知,且
,則點
到邊
的距離為1,列出方程,即可求解;
(3)根據題意,,則
都在以
為直徑的圓
上,
是直線
上的動點,設
,聯立兩個圓的方程,即可求解.
(1)由題,設點的坐標為
,
因為,即
,
整理得,
所以所求曲線的軌跡方程為
.
(2)依題意,,且
,
由圓的性質,可得點到邊
的距離為1,
即點到直線
的距離為
,解得
,
所以所求直線的斜率為
.
(3)依題意,,則
都在以
為直徑的圓
上,
是直線
上的動點,設
,
則圓的圓心為
,且經過坐標原點,
即圓的方程為,
又因為在曲線
上,
由,可得
,
即直線的方程為
,
由且
,可得
,解得
,
所以直線過定點
.
科目:高中數學 來源: 題型:
【題目】一次數學測驗中,全班名學生的數學成績的頻率分布直方圖如下,已知分數在
的學生數有14人.
(1)求總人數和分數在
的人數
;
(2)利用頻率分布直方圖,估算該班學生數學成績的眾數和中位數,平均數各是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為,已知
且
.
(1)求角;
(2)如圖,D為△ABC外一點,若在平面四邊形ABCD中,,求△ACD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為矩形,AC、BD交于點O,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1)求證:BD⊥平面PAC;
(2)若,
,求二面角
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線M:的左、右頂點分別為A,B,設P是曲線M上的任意一點.
(1)當P異于A,B時,記直線PA、PB的斜率分別為、
則
是否為定值,請說明理由.
(2)已知點C在曲線M長軸上(異于A、B兩點),且的最大值為7,求點C的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了預防流感,某學校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內每立方米空氣的含藥量(毫克)與時間
(小時)成正比.藥物釋放完畢后,
與
的函數關系式為
(
為常數),如圖所示,根據圖中提供的信息,回答下列問題:
(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間
(小時)之間的函數關系式;
(2)據測定,當空氣中每立方米空氣的含藥量降到0.25毫克以下時,學生方可進教室,那從藥物釋放開始,至少需要經過多少小時后,學生才能回到進教室?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現對一塊邊長8米的正方形場地ABCD進行改造,點E為線段BC的中點,點F在線段CD或AD上(異于A,C),設(米),
的面積記為
(平方米),其余部分面積記為
(平方米).
(1)當(米)時,求
的值;
(2)求函數的最大值;
(3)該場地中部分改造費用為
(萬元),其余部分改造費用為
(萬元),記總的改造費用為W(萬元),求W取最小值時x的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com