(12分)在平面α內有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且
斜線SA、SB與平面α所成角相等。
(1)求證:AC=BC
(2)又設點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離。
科目:高中數學 來源: 題型:解答題
(本小題共12分)如圖,四棱錐的底面是直角梯形,
,
,
和
是兩個邊長為
的正三角形,
,
為
的中點,
為
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分別是邊A1A2,A2A3上的一點,沿線段BC,CD,DB分別將△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一點A。
(Ⅰ)求證:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(理)如圖9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)問BC邊上是否存在Q點,使⊥
,說明理由.
(2)問當Q點惟一,且cos<,
>=
時,求點P的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知四棱錐中,側棱
平面
,底面
是平行四邊形,
,
,
,
分別是
的中點.
(1)求證:平面
(2)當平面與底面
所成二面角為
時,求二面角
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:單選題
平面α經過三點A(-1,0,1),B(1,1,2),C(2,-1,0),則下列向量中與平面α的法向量不垂直的是( )
A.(![]() | B.(6,-2,-2) |
C.(4,2,2) | D.(-1,1,4) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com