精英家教網 > 高中數學 > 題目詳情
過點M(-,)與N(-)的直線的傾斜角是

A.                                                               B.

C.                                                      D.-

解析:∵kMN==1,即tanα=1,

α∈[0,π),∴α=.

答案:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知點D在定線段MN上,且|MN|=3,|DN|=1,一個動圓C過點D且與MN相切,分別過M、N作圓C的另兩條切線交于點P.
(Ⅰ)建立適當的直角坐標系,求點P的軌跡方程;
(Ⅱ)過點M作直線l與所求軌跡交于兩個不同的點A、B,若(
MA
MB
)•(
MA
MB
)=0,且λ∈[2-
3
,2+
3
],求直線l與直線MN夾角θ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
m
+
y2
n
=1(0<m<n)的長軸長為2
2
,離心率為
2
2
,點M(-2,0),
(1)求橢圓C的方程;
(2)過點M的直線l與橢圓C交于A、B兩點(A在B的左邊)若
MA
MB
,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2013-2014學年四川省綿陽市高三12月月考理科數學試卷(解析版) 題型:解答題

設橢圓E:=1()過點M(2,), N(,1),為坐標原點

(I)求橢圓E的方程;

(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年甘肅省河西五市高三第二次(5月)聯考理科數學試卷(解析版) 題型:解答題

如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N  (點M在點N的右側),且。橢圓D:的焦距等于,且過點

( I ) 求圓C和橢圓D的方程;

(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

 

查看答案和解析>>

科目:高中數學 來源:2007年江蘇省蘇錫常鎮四市高考數學一模試卷(解析版) 題型:解答題

已知點D在定線段MN上,且|MN|=3,|DN|=1,一個動圓C過點D且與MN相切,分別過M、N作圓C的另兩條切線交于點P.
(Ⅰ)建立適當的直角坐標系,求點P的軌跡方程;
(Ⅱ)過點M作直線l與所求軌跡交于兩個不同的點A、B,若()•()=0,且λ∈[2-,2+],求直線l與直線MN夾角θ的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视