【題目】在直角坐標系中,斜率為k的動直線l過點
,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)若直線l與曲線C有兩個交點,求這兩個交點的中點P的軌跡關于參數k的參數方程;
(2)在條件(1)下,求曲線的長度.
科目:高中數學 來源: 題型:
【題目】某市春節期間7家超市的廣告費支出(萬元)和銷售額
(萬元)數據如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
參數數據及公式:,
,
,
,
,
,
.
(1)若用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程;
(2)用對數回歸模型擬合y與x的關系,可得回歸方程:,經計算得出線性回歸模型和對數模型的
分別約為0.75和0.97,請用
說明選擇哪個回歸模型更合適,并用此模型預測A超市廣告費支出為8萬元時的銷售額.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解一個小水庫中養殖的魚的有關情況,從這個水庫中多個不同位置捕撈出100條魚,稱得每條魚的質量(單位:kg),并將所得數據分組,畫出頻率分布直方圖(如圖所示).
(1)在下面表格中填寫相應的頻率;
分組 | 頻率 |
(2)估計數據落在中的概率;
(3)將上面捕撈的100條魚分別作一記分組頻率號后再放回水庫.幾天后再從水庫的多處不同位置捕撈出120條魚,其中帶有記號的魚有6條.請根據這一情況來估計該水庫中魚的總條數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是一塊平行四邊形園地,經測量,
.擬過線段
上一點
設計一條直路
(點
在四邊形
的邊上,不計直路的寬度),將該園地分為面積之比為
的左,右兩部分分別種植不同花卉.設
(單位:m).
(1)當點與點
重合時,試確定點
的位置;
(2)求關于
的函數關系式;
(3)試確定點的位置,使直路
的長度最短.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發現:“平面內到兩個定點的距離之比為定值
的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標系
中,
點
.設點
的軌跡為
,下列結論正確的是( )
A. 的方程為
B. 在軸上存在異于
的兩定點
,使得
C. 當三點不共線時,射線
是
的平分線
D. 在上存在點
,使得
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com