【題目】已知函數f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)當a>﹣2時,函數f(x)的最小值為4,求實數a的值;
(2)若對于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求實數a的取值范圍.
【答案】
(1)解:將函數分段為: ,
∴當且僅當 時,f(x)min=a+2,
由題意得a+2=4,即a=2
(2)解:當x∈[﹣1,4]時f(x)≥3x恒成立|2x﹣a|≥x﹣2恒成立,
若﹣1≤x<2,不等式恒成立,此時a∈R;
若2≤x≤4,|2x﹣a|≥x﹣22x﹣a≥x﹣2或2x﹣a≤(x﹣2),
即a≤x+2或a≥3x﹣2在x∈[2,4]恒成立,所以a≤4或a≥10,
綜上知,所求實數a的取值范圍是(﹣∞,4]∪[10,+∞)
【解析】(1)求出函數的分段函數的形式,求出f(x)的最小值,得到關于a的方程,解出即可;(2)問題等價于|2x﹣a|≥x﹣2恒成立,通過討論x的范圍,求出a的范圍即可.
【考點精析】認真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號).
科目:高中數學 來源: 題型:
【題目】近年來大氣污染防治工作得到各級部門的重視,某企業在現有設備下每日生產總成本(單位:萬元)與日產量
(單位:噸)之間的函數關系式為
,現為了配合環境衛生綜合整治,該企業引進了除塵設備,每噸產品除塵費用為
萬元,除塵后當日產量
時,總成本
.
(1)求的值;
(2)若每噸產品出廠價為48萬元,試求除塵后日產量為多少時,每噸產品的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接夏季旅游旺季的到來,少林寺單獨設置了一個專門安排游客住宿的客棧,寺廟的工作人員發現為游客準備的一些食物有些月份剩余不少,浪費很嚴重,為了控制經營成本,減少浪費,就想適時調整投入.為此他們統計每個月入住的游客人數,發現每年各個月份來客棧入住的游客人數會發生周期性的變化,并且有以下規律:
①每年相同的月份,入住客棧的游客人數基本相同;
②入住客棧的游客人數在2月份最少,在8月份最多,相差約400人;
③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達到最多.
(1)試用一個正弦型三角函數描述一年中入住客棧的游客人數y與月x份之間的關系;
(2)請問哪幾個月份要準備400份以上的食物?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的左、右焦點分別為F1、F2 , A為橢圓E的右頂點,B,C分別為橢圓E的上、下頂點.線段CF2的延長線與線段AB交于點M,與橢圓E交于點P.
(1)若橢圓的離心率為 ,△PF1C的面積為12,求橢圓E的方程;
(2)設S =λS
,求實數λ的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
已知圓和圓
.
(1)若直線過點
,且被圓
截得的弦長為
,
求直線的方程;(2)設P為平面上的點,滿足:
存在過點P的無窮多對互相垂直的直線和
,
它們分別與圓和圓
相交,且直線
被圓
截得的弦長與直線被圓
截得的弦長相等,試求所有滿足條件的點P的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=sin(ωx+φ)+ 的圖象過(1,2),若f(x)相鄰的零點為x1 , x2且滿足|x1﹣x2|=6,則f(x)的單調增區間為( )
A.[﹣2+12k,4+12k](k∈Z)
B.[﹣5+12k,1+12k](k∈Z)
C.[1+12k,7+12k](k∈Z)
D.[﹣2+6k,1+6k](k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,對任意的
,滿足
,其中
,
為常數.
(1)若的圖象在
處的切線經過點
,求
的值;
(2)已知,求證
;
(3)當存在三個不同的零點時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三點,
,
,曲線
上任意一點
滿足
.
(1)求的方程;
(2)動點
在曲線
上,
是曲線
在
處的切線.問:是否存在定點
使得
與
都相交,交點分別為
,且
與
的面積之比為常數?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ﹣mx(m∈R). (Ⅰ)當m=0時,討論函數f(x)的單調性;
(Ⅱ)當b>a>0時,總有 >1成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com