【題目】(本小題滿分13分)
品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這
瓶酒,并重新按品質優劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。
現設,分別以
表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令
,
則是對兩次排序的偏離程度的一種描述。
(Ⅰ)寫出的可能值集合;
(Ⅱ)假設等可能地為1,2,3,4的各種排列,求
的分布列;
(Ⅲ)某品酒師在相繼進行的三輪測試中,都有,
(i)試按(Ⅱ)中的結果,計算出現這種現象的概率(假定各輪測試相互獨立);
(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。
科目:高中數學 來源: 題型:
【題目】已知a為正的常數,函數f(x)=|ax﹣x2|+lnx.
(1)若a=2,求函數f(x)的單調遞增區間;
(2)設g(x)= ,求g(x)在區間[1,e]上的最小值.(e≈2.71828為自然對數的底數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
:
,以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線
:
.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的
、2倍后得到曲線
,求
的參數方程;
(2)在曲線上求一點
,使點
到直線
的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程是
(
為參數),以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,且直線
與曲線
交于
,
兩點.
(Ⅰ)求曲線的直角坐標方程及直線
恒過的定點
的坐標;
(Ⅱ)在(Ⅰ)的條件下,若,求直線
的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在區間(﹣1,1)上的函數f(x)= 是奇函數,且f(
)=
,
(1)確定f(x)的解析式;
(2)判斷f(x)的單調性并用定義證明;
(3)解不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】朱世杰是歷史上最未打的數學家之一,他所著的《四元玉鑒》卷中“如像招數一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數比前一天多7人,修筑堤壩的每人每天發大米3升,共發出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應發大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在[1,+∞)上的函數f(x)= 給出下列結論:
①函數f(x)的值域為(0,8];
②對任意的n∈N,都有f(2n)=23﹣n;
③存在k∈( ,
),使得直線y=kx與函數y=f(x)的圖象有5個公共點;
④“函數f(x)在區間(a,b)上單調遞減”的充要條件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正確命題的序號是( )
A.①②③
B.①③④
C.①②④
D.②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com