精英家教網 > 高中數學 > 題目詳情

【題目】(本小題滿分13分)

品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質優劣為它們排序,這稱為一輪測試。根據一輪測試中的兩次排序的偏離程度的高低為其評為。

現設,分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令

是對兩次排序的偏離程度的一種描述。

()寫出的可能值集合;

()假設等可能地為1,2,3,4的各種排列,求的分布列;

()某品酒師在相繼進行的三輪測試中,都有,

(i)試按(Ⅱ)中的結果,計算出現這種現象的概率(假定各輪測試相互獨立);

(ii)你認為該品酒師的酒味鑒別功能如何?說明理由。

【答案】

【解析】

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知a為正的常數,函數f(x)=|ax﹣x2|+lnx.
(1)若a=2,求函數f(x)的單調遞增區間;
(2)設g(x)= ,求g(x)在區間[1,e]上的最小值.(e≈2.71828為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線 ,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線 .

(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,求的參數方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程是為參數),以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且直線與曲線交于,兩點.

(Ⅰ)求曲線的直角坐標方程及直線恒過的定點的坐標;

(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在區間(﹣1,1)上的函數f(x)= 是奇函數,且f( )=
(1)確定f(x)的解析式;
(2)判斷f(x)的單調性并用定義證明;
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】朱世杰是歷史上最未打的數學家之一,他所著的《四元玉鑒》卷中“如像招數一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數比前一天多7人,修筑堤壩的每人每天發大米3升,共發出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應發大米( )

A. 894升 B. 1170升 C. 1275升 D. 1457升

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數的單調性;

(2)若直線與曲線的交點的橫坐標為,且,求整數所有可能的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在[1,+∞)上的函數f(x)= 給出下列結論:
①函數f(x)的值域為(0,8];
②對任意的n∈N,都有f(2n)=23n;
③存在k∈( , ),使得直線y=kx與函數y=f(x)的圖象有5個公共點;
④“函數f(x)在區間(a,b)上單調遞減”的充要條件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正確命題的序號是(
A.①②③
B.①③④
C.①②④
D.②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個圖形,其中能表示從集合M到集合N的函數關系的是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视