【題目】已知函數f(x)=( +
)x3(a>0,a≠1).
(1)討論函數f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.
【答案】
(1)解:定義域為(﹣∞,0)∪(0,+∞),
∵f(﹣x)=( +
)(﹣x)3=﹣(
+
)x3=(
+
)=f(x)
∴f(x)是偶函數
(2)解:∵函數f(x)在定義域上是偶函數,
∴函數y=f(2x)在定義域上也是偶函數,
∴當x∈(0,+∞)時,f(x)+f(2x)>0可滿足題意,
∵當x∈(0,+∞)時,x3>0,
∴只需 +
+
+
>0,即
>0,
∵a2x+ax+1>0,
∴(ax)2﹣1>0,解得a>1,
∴當a>1時,f(x)+f(2x)>0在定義域上恒成立
【解析】(1)由可推知f(﹣x)=f(x),從而可判斷函數f(x)的奇偶性;(2)利用(1)知f(x)為偶函數,可知當x∈(0,+∞)時,x3>0,從而可判知,要使f(x)+f(2x)>0在其定義域上恒成立,只需當a>1時即可.
科目:高中數學 來源: 題型:
【題目】已知一點在直線上從時刻t=0(s)開始以速度v(t)=t2﹣4t+3(m/s)運動,求:
(1)在t=4s時的位置;
(2)在t=4s的運動路程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,點E,F分別在棱BB1 , CC1上,且C1F= C1C,BE=λBB1 , 0<λ<1.
(1)當λ= 時,求異面直線AE與A1F所成角的大;
(2)當直線AA1與平面AEF所成角的正弦值為 時,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中,
,
,
,
,
分別在
上,
,現將四邊形
沿
折起,使
.
(1)若,在折疊后的線段
上是否存在一點
,使得
平面
?若存在,求出
的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個結論: ①函數 的值域是(0,+∞);
②直線2x+ay﹣1=0與直線(a﹣1)x﹣ay﹣1=0平行,則a=﹣1;
③過點A(1,2)且在坐標軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側面積等于球的表面積.
其中正確的結論序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且以原點為圓心,橢圓的焦距為直徑的圓與直線
相切(
為常數).
(1)求橢圓的標準方程;
(2)如圖,若橢圓的左、右焦點分別為
,過
作直線
與橢圓分別交于兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一條光線從點(﹣2,﹣3)射出,經y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com