求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于
;橢圓經過點
;橢圓的一個焦點到長軸兩端點的距離分別為10和4.
科目:高中數學 來源: 題型:解答題
已知點是橢圓
的右焦點,點
、
分別是
軸、
軸上的動點,且滿足
.若點
滿足
.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)設過點任作一直線與點
的軌跡交于
、
兩點,直線
、
與直線
分別交
于點、
(
為坐標原點),試判斷
是否為定值?若是,求出這個定值;若不是,
請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的兩焦點是F1(0,-1),F2(0,1),離心率e=
(1)求橢圓方程;(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的長軸長為,一個焦點的坐標為(1,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓的右頂點.
(。┤糁本l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為,
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A,B兩點在拋物線C:x2=4y上,點M(0,4)滿足=λ
.
(1)求證:;
(2)設拋物線C過A、B兩點的切線交于點N.
(ⅰ)求證:點N在一條定直線上;
(ⅱ)設4≤λ≤9,求直線MN在x軸上截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點M是圓C:上的一點,且
軸,
為垂足,點
滿足
,記動點
的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動弦,O為坐標原點,求面積S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的右焦點為
,離心率為
。
(1)若,求橢圓的方程。
(2)設直線與橢圓相交于
兩點,
分別為線段
的中點。若坐標原點
在以線段
為直徑的圓上,且
,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知點在橢圓C:
上,且橢圓C的離心率
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點作直線交橢圓C于點A.B.△ABQ的垂心為T,是否存在實數m ,使得垂心T在y軸上.若存在,求出實數m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com