【題目】設函數 .
(1)求f(x)的單調區間及最大值;
(2)討論關于x的方程|lnx|=f(x)根的個數.
【答案】
(1)解:∵ =
,解f′(x)>0,得
;解f′(x)<0,得
.
∴函數f(x)的單調遞增區間為 ;單調遞減區間為
.
故f(x)在x= 取得最大值,且
(2)解:函數y=|lnx|,當x>0時的值域為[0,+∞).如圖所示:
①當0<x≤1時,令u(x)=﹣lnx﹣ ﹣c,
c= =g(x),
則 =
.
令h(x)=e2x+x﹣2x2,則h′(x)=2e2x+1﹣4x>0,∴h(x)在x∈(0,1]單調遞增,
∴1=h(0)<h(x)≤h(1)=e2﹣1.
∴g′(x)<0,∴g(x)在x∈(0,1]單調遞減.
∴c .
②當x≥1時,令v(x)=lnx﹣ ,得到c=lnx﹣
=m(x),
則 =
>0,
故m(x)在[1,+∞)上單調遞增,∴c≥m(1)= .
綜上①②可知:當 時,方程|lnx|=f(x)無實數根;
當 時,方程|lnx|=f(x)有一個實數根;
當 時,方程|lnx|=f(x)有兩個實數根.
【解析】(1)利用導數的運算法則求出f′(x),分別解出f′(x)>0與f′(x)<0即可得出單調區間及極值與最值;(2)分類討論:①當0<x≤1時,令u(x)=﹣lnx﹣ ﹣c,②當x≥1時,令v(x)=lnx﹣
.利用導數分別求出c的取值范圍,即可得出結論.
【考點精析】關于本題考查的利用導數研究函數的單調性,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】甲、乙兩人組成“星隊”參加猜成語活動,每輪活動由甲、乙各猜一個成語,在一輪活動中,如果兩人都猜對,則“星隊”得3分;如果只有一個人猜對,則“星隊”得1分;如果兩人都沒猜對,則“星隊”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是
;每輪活動中甲、乙猜對與否互不影響.各輪結果亦互不影響.假設“星隊”參加兩輪活動,求:
(I)“星隊”至少猜對3個成語的概率;
(II)“星隊”兩輪得分之和為X的分布列和數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且滿足12Sn﹣36=3n2+8n,數列{log3bn}為等差數列,且b1=3,b3=27.
(Ⅰ)求數列{an}與{bn}的通項公式;
(Ⅱ)令cn=(﹣1)n ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中點.
(1)求證:A1C∥平面BDC1;
(2)若AB⊥AC,且AB=AC= AA1 , 求二面角A﹣BD﹣C1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: +
=1的焦點在x軸上,A是E的左頂點,斜率為k(k>0)的直線交E于A,M兩點,點N在E上,MA⊥NA.
(Ⅰ)當t=4,|AM|=|AN|時,求△AMN的面積;
(Ⅱ)當2|AM|=|AN|時,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,g(x)=﹣2xln(1+
)﹣lnf(x).
(Ⅰ)討論函數f(x)的單調性;
(Ⅱ)當a=0時,函數g(x)在定義域內是否存在零點?如果存在,求出該零點;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD是直角梯形,AB⊥AD,AB∥CD,
PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中點.
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com