AB、CD在平面α內,AB∥CD,且AB與CD相距28厘米,EF在平面α外,EF∥AB,且EF與AB相距17厘米,EF與平面α相距15厘米,則EF與CD的距離為( )
A.25厘米
B.39厘米
C.25或39厘米
D.15厘米
【答案】
分析:由題意可知:AB∥CD∥EF,若將這三條平行直線看成是一個直三棱柱的三條側棱的話,則在具體的圖形之中,求EF與CD的距離就容易多了.這題要分兩種情況討論:第一種情況是EF的位置介于AB和CD中間;第二種情況是EF的位置偏向于直線AB,兩種情況都考慮到了,此題就迎刃而解了.
解答:
解:由題意可知:AB∥CD∥EF,
故可將這三條平行直線看成是直三棱柱BFD-AEC的三條側棱,
所以EC的長度即為EF與CD的距離.
第一種情況:如圖1所示:
在平面AEC中,作EP⊥AC,垂足為P,則PE=15cm,AE=17cm,
所以在Rt△APE中,AP=8cm,
則PC=20cm,所以在Rt△EPC中,CE=25cm,
即EF與CD的距離為25cm

第二種情況:如圖2所示:在平面AEC中,
作EQ⊥AC,交CA的延長線于Q,則QE=15cm,AE=17cm,
所以在Rt△AQE中,AQ=8cm,則QC=36cm,
所以在Rt△EQC中,CE=39cm,
即EF與CD的距離為39cm
故選C.
點評:本小題考查空間中的線面關系,解三角形等基礎知識,考查空間想象能力和思維能力,分類討論的能力.