精英家教網 > 高中數學 > 題目詳情

【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時看燈塔B在貨輪的北偏東120°.(要畫圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.

【答案】解:(1)在△ABD中,∠ADB=60°,∴∠B=45°,
由正弦定理,得,
即AD==24(海里),
(2)在△ACD中,∵AC=8,∠CAD=30°,
∴由余弦定理得CD2=AD2+AC2﹣2ADACcos∠CAD=242+(82﹣2×24×8cos30°=192,
解得:CD=8≈14(海里),
則燈塔C與D之間的距離約為14海里.

【解析】(1)在三角形ABD中,利用正弦定理列出關系式,將各自的值代入求出AD的長,即可確定出貨船的航行速度;
(2)在三角形ACD中,利用余弦定理列出關系式,將各自的值代入計算即可求出CD的長.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設a>0, 是R上的函數,且滿足f(﹣x)=f(x),x∈R.
(1)求a的值;
(2)證明f(x)在(0,+∞)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調查某市學生百米運動成績,從該市學生中按照男女生比例隨機抽取50名學生進行百米測試,測試成績全部都介于13秒到18秒之間,將測試結果按如下方式分成五組,第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.

(1)設m,n表示樣本中兩個學生的百米測試成績,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根據有關規定,成績小于16秒為達標.
如果男女生使用相同的達標標準,則男女生達標情況如附表:

根據上表數據,能否在犯錯誤的概率不超過0.01的前提下認為“體育達標與性別有關”?若有,你能否提出一個更好的解決方法來?
附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,一條河的兩岸平行,河的寬度d=600m,一艘客船從碼頭A出發勻速駛往河對岸的碼頭B.已知|AB|=1km,水流速度為2km/h, 若客船行駛完航程所用最短時間為6分鐘,則客船在靜水中的速度大小為( )

A.8km/h
B.km/h
C.km/h
D.10km/h

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2+bx+1(a,b為實數),x∈R,
(1)若f(﹣1)=0,且函數f(x)的值域為[0,+∞),求F(x)的表達式;
(2)在(1)的條件下,當x∈[﹣2,2]時,g(x)=f(x)﹣kx是單調函數,求實數k的取值范圍;
(3)設mn<0,m+n>0,a>0且f(x)為偶函數,判斷F(m)+F(n)能否大于零.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)是定義在R上的偶函數,對于xR,都有f(x+4)=f(x)+f(2)成立,當x1,x2[0,2]且x1≠x2時,都有 給出下列四個命題:

①f(﹣2)=0;

直線x=﹣4是函數y=f(x)的圖象的一條對稱軸;

函數y=f(x)在[4,6]上為減函數;

函數y=f(x)在(﹣8,6]上有四個零點.

其中所有正確命題的序號為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班主任對全班50名學生學習積極性和對待班級工作的態度進行了調查,統計數據如下表所示:

積極參加班級工作

不太主動參加班級工作

合計

學習積極性高

18

7

25

學習積極性一般

6

19

25

合計

24

26

50

參考公式及數據:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828


(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態度是否有關系?并說明理由?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數有三個不同的零點, , (其中),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)當m=-1時,求AB;

(2)若AB,求實數m的取值范圍;

(3)若AB,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视