精英家教網 > 高中數學 > 題目詳情
設隨機變量~,又,則的值分別是( )
A.B.C.D.
C

試題分析:因為隨機變量~,所以,所以==。
點評:本題考查二項分布的性質和應用,解題時要注意二項分布期望公式和方差公式Dξ=np(1-p)的靈活運用。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數據,如下表所示.
一次購物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顧客數(人)
x
30
25
y
10
結算時間(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結算時間X的分布列與數學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結算,且各顧客的結算相互獨立,求該顧客結算前的等候時間不超過2.5分鐘的概率.
(注:將頻率視為概率)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設離散型隨機變量X的分布列為
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
求:(Ⅰ)2X+1的分布列;
(Ⅱ)|X-1|的分布列.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.已知盒子中有4個紅球,2個白球,從中一次抓三個球
(1)求沒有抓到白球的概率;
(2)記抓到球中的紅球數為X ,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知甲盒內有大小相同的1個紅球和3個黑球,乙盒內有大小相同的2個紅球和4個黑球,現從甲、乙兩個盒內各任取2個球.
(Ⅰ)求取出的4個球中恰有1個紅球的概率;
(Ⅱ)設“從甲盒內取出的2個球恰有1個為黑球”為事件A;“從乙盒內取出的2個球都是黑球”為事件B,求在事件A發生的條件下,事件B發生的概率;
(Ⅲ)設為取出的4個球中紅球的個數,求的分布列和數學期望。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)電信公司進行促銷活動,促銷方案為顧客消費1000元,便可獲得獎券一張,每張獎券中獎的概率為,中獎后電信公司返還顧客現金1000元,小李購買一臺價格2400元的手機,只能得2張獎券,于是小李補償50元給同事購買一臺價格600元的小靈通(可以得到三張獎券),小李抽獎后實際支出為X(元).
(I)求X的分布列;(II)試說明小李出資50元增加1張獎券是否劃算。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設隨機變量的分布列為下表所示且,則  (   )

0
1
2
3

0.1


0.1
    A.-0.2         B.0.1           C.0.2           D.-0.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

牧場的10頭牛,因誤食瘋牛病毒污染的飼料被感染,已知該病的發病率為0.02,設發病牛的頭數為X,則D(X)等于_____________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設隨機變量X只能取5,6,7,…,16這12個值,且取每一個值的概率均相等,則P(X>8)=________.若P(X<x)=,則x的范圍是________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视