精英家教網 > 高中數學 > 題目詳情

【題目】已知正方形的邊長為4,,分別為的中點,以為棱將正方形折成如圖所示的的二面角,點在線段上且不與點,重合,直線與由,,三點所確定的平面相交,交點為

(1)若的中點,試確定點的位置,并證明直線平面;

(2)若,求的長度,并求此時點到平面的距離.

【答案】(1)見解析;(2)

【解析】

1)延長的延長線于,連接,利用平面幾何知識得,再根據線面平行判定定理得結論,(2)根據線線垂直、線面垂直關系將條件轉化到平面內垂直關系,再根據相似三角形以及直角三角形計算得結果.

(1)延長的延長線于,

中點,中點,

,中點,

連接,則中點,所以

平面,平面,平面;

(2)由題意可知,所以平面,同理可得平面,因為二面角60°, 是全等的正三角形,取中點,則,平面,平面,因此平面,即,平面,

的長度為

,則由平面,得平面,即為點到平面的距離,

到平面的距離為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知二次函數fx)的最小值為﹣4,且關于x的不等式fx)≤0的解集為{x|1x3,xR}

1)求函數fx)的解析式;

2)求函數gx的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓的左焦點為,橢圓上任意點到的最遠距離是,過直線軸的交點任作一條斜率不為零的直線與橢圓交于不同的兩點、,點關于軸的對稱點為.

(1)求橢圓的方程;

(2)求證:、、三點共線;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數、經濟發展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經過一個月的統計,發現該流量包的定價:(單位:元/月)和購買人數(單位:萬人)的關系如表:

(1)根據表中的數據,運用相關系數進行分析說明,是否可以用線性回歸模型擬合的關系?并指出是正相關還是負相關;

(2)①求出關于的回歸方程;

②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內購買該流量包的人數能否超過20 萬人.

參考數據:,.

參考公式:相關系數,回歸直線方程

其中,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知z為虛數,z+為實數.

(1)z-2為純虛數,求虛數z.

(2)|z-4|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“割圓術”是劉徽最突出的數學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數值,這個結果是當時世界上圓周率計算的最精確數據.如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數據:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)當為何值時,直線是曲線的切線;

(2)若不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠對一批產品進行了抽樣檢測.右圖是根據抽樣檢測后的產品凈重(單位:克)數據繪制的頻率分布直方圖,其中產品凈重的范圍是[96,106],樣本數據分組為[96,98),[98,100),[100102),[102104),[104,106],已知樣本中產品凈重小于100克的個數是36,則樣本中凈重大于或等于98克并且小于104克的產品的個數是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓)的左、右焦點為,右頂點為,上頂點為.已知

1)求橢圓的離心率;

2)設為橢圓上異于其頂點的一點,以線段為直徑的圓經過點,經過原點的直線與該圓相切,求直線的斜率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视