精英家教網 > 高中數學 > 題目詳情
14、規定x◇y=(x+y)2-xy,x、y∈R+,若1◇a=3,則函數f(x)=a◇x的值域為
(1,+∞)
分析:由題中給出的算式x◇y=(x+y)2-xy,x、y∈R+,容易求出1◇a=3中a的值,從而求出f(x)=a◇x表達式,得出值域.
解答:解:由題意知,∵1◇a=(1+a)2-1•a=a2+a+1=3,即a2+a-2=0;解得,a=1,或a=-2(舍去);
∴f(x)=a◇x=1◇x=(1+x)2-1•x=x2+x+1,其中x∈R+,又f(x)是二次函數,且在x∈R+時,f(x)單調遞增,
∴f(x)的值域為(f(1),+∞),即(1,+∞).
故答案為:(1,+∞)
點評:本題給出算式模型,進行函數的有關計算;注意計算時要嚴格按照算式的要求(條件)進行.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

義域分別是Df,Dg的函數y=f(x),y=g(x),規定:函數h(x)=
f(x)•g(x)     (x∈Df且x∈Dg)
f(x)     (x∈Df且x∉Dg)
g(x)   (x∉Df且x∈Dg)
,
若函數f(x)=-2x+3,x≥1;g(x)=x-2,X∈R.則函數h(x)的解析式為
h(x)=
-2x2+7x-6  (x≥1)
x-2                 (x<1)
h(x)=
-2x2+7x-6  (x≥1)
x-2                 (x<1)
,函數h(x)的最大值為
1
8
1
8

查看答案和解析>>

科目:高中數學 來源: 題型:

班主任為了對本班學生的考試成績進行分析,決定從全班25名女同學,15名男同學中隨機抽取一個容量為8的樣本進行分析.
(I)如果按性別比例分層抽樣,男、女生各抽取多少名才符合抽樣要求?
(II)隨機抽出8名,他們的數學、物理分數對應如下表:
學生編號 1 2 3 4 5 6 7 8
數學分數x 60 65 70 75 80 85 90 95
物理分數y 72 77 80 84 88 90 93 95
(i)若規定85分以上(包括85分)為優秀,在該班隨機調查一名同學,他的數學和物理分數均為優秀的概率是多少?
(ii)根據上表數據,用變量y與x的相關系數或散點圖說明物理成績y與數學成績x之間線性相關關系的強弱.如果有較強的線性相關關系,求y與x的線性回歸方程(系數精確到0.01);如果不具有線性相關關系,說明理由.
參考公式:相關系數r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2

回歸直線的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
?
y
i
是與xi對應的回歸估計值.
參考數據:
.
x
=77.5,
.
y
=84.875
8
i=1
(xi-
.
x
)
2
≈1050
,
8
i=1
(yi-
.
y
)
2
≈457
,
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
1050
≈32.4
,
457
≈21.4
,
550
≈23.5

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

規定x◇y=(x+y)2-xy,x、y∈R+,若1◇a=3,則函數f(x)=a◇x的值域為 ________.

查看答案和解析>>

科目:高中數學 來源:2010年浙江省壽昌中學、新安江中學、嚴州中學高三第二次聯考數學試卷(理科)(解析版) 題型:解答題

規定x◇y=(x+y)2-xy,x、y∈R+,若1◇a=3,則函數f(x)=a◇x的值域為    

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视