【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.
(1)求證:MN∥平面PAD;
(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.
【答案】(1)見解析;(2)見解析.
【解析】
(1)取PD的中點H,易證得AMNH為平行四邊形,從而證得MN∥AH,即證得結論;
(2)由平面MNQ∥平面PAD,則應有MQ∥PA,利用中位線定理可確定位置.
(1)如圖,取PD的中點H,
連接AH、NH.由N是PC的中點,H是PD的中點,知NH∥DC,NH=DC.
由M是AB的中點,知AM∥DC,AM=DC
.
∴NH∥AM,NH=AM,所以AMNH為平行四邊形.
∴MN∥AH.
由MN平面PAD,AH平面PAD,
知MN∥平面PAD.
(2)若平面MNQ∥平面PAD,則應有MQ∥PA,
∵M是AB中點,∴Q是PB的中點.
即當Q為PB的中點時,平面MNQ∥平面PAD.
科目:高中數學 來源: 題型:
【題目】若函數y=f(x)的導函數為y=f′(x),且f′(x)=sin2x﹣ cos2x,則下列說法正確的是( )
A.y=f(x)的周期為
B.y=f(x)在[0, ]上是減函數
C.y=f(x)的圖象關于直線x= 對稱
D.y=f(x)是偶函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx。
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求證:當x>0時,f(x)≥l-;
(3)若x-1>alnx對任意x>1恒成立,求實數a的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】a、b、c為三條不重合的直線,α、β、γ為三個不重合的平面,現給出六個命題.
①a∥b; ②
a∥b; ③
α∥β;
④α∥β; ⑤
a∥α; ⑥
a∥α,
其中正確的命題是________.(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)判斷并證明函數的奇偶性;
(2)判斷當時函數
的單調性,并用定義證明;
(3)若定義域為
,解不等式
.
【答案】(1)奇函數(2)增函數(3)
【解析】試題分析:(1)判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)與f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。(2)利函數單調性定義證明單調性,按假設,作差,化簡,判斷,下結論五個步驟。(3)由(1)(2)奇函數在(-1,1)為單調函數,
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數的單調性及定義(-1,1)求解得x范圍。
試題解析:(1)函數為奇函數.證明如下:
定義域為
又
為奇函數
(2)函數在(-1,1)為單調函數.證明如下:
任取,則
,
即
故在(-1,1)上為增函數
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點睛】
(1)奇偶性:判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)與f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。
(2)單調性:利函數單調性定義證明單調性,按假設,作差,化簡,定號,下結論五個步驟。
【題型】解答題
【結束】
22
【題目】已知函數.
(1)若的定義域和值域均是
,求實數
的值;
(2)若在區間
上是減函數,且對任意的
,都有
,求實數
的取值范圍;
(3)若,且對任意的
,都存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,SA=SB=AB=BC=CA=6,且側面ASB⊥底面ABC,則三棱錐S-ABC外接球的表面積為( )
A. 60π B. 56π C. 52π D. 48π
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com