【題目】設函數,其中e為自然對數的底數.
(1)當a=0時,求函數f (x)的單調減區間;
(2)已知函數f (x)的導函數f (x)有三個零點x1,x2,x3(x1 x2 x3).①求a的取值范圍;②若m1,m2(m1 m2)是函數f (x)的兩個零點,證明:x1m1x1 1.
科目:高中數學 來源: 題型:
【題目】已知,函數
.
(1)求實數的值,使得
為奇函數;
(2)若關于的方程
有兩個不同實數解,求
的取值范圍;
(3)若關于的不等式
對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程;
(2)射線與曲線
分別交于
兩點(異于原點
),定點
,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓焦點在
軸上,離心率為
,上焦點到上頂點距離為
.
(1)求橢圓的標準方程;
(2)直線與橢圓
交與
兩點,
為坐標原點,
的面積
,則
是否為定值,若是求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是圓
的直徑,點
是圓
上異于
,
的點,直線
平面
,
,
分別是
,
的中點.
(Ⅰ)記平面與平面
的交線為
,試判斷直線
與平面
的位置關系,并加以證明;
(Ⅱ)設,求二面角
大小的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是某公司2018年1月至12月空調銷售任務及完成情況的氣泡圖,氣泡的大小表示完成率的高低,如10月份銷售任務是400臺,完成率為90%,則下列敘述不正確的是( )
A. 2018年3月的銷售任務是400臺
B. 2018年月銷售任務的平均值不超過600臺
C. 2018年第一季度總銷售量為830臺
D. 2018年月銷售量最大的是6月份
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系內,動點
到定點
的距離與
到定直線
的距離之比為
(1)求動點的軌跡
的方程;
(2)若軌跡上的動點
到定點
的距離的最小值為1,求
的值;
(3)設點、
是軌跡
上兩個動點,直線
、
與軌跡
的另一交點分別為
、
,且直線
、
的斜率之積等于
,問四邊形
的面積
是否為定值?請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,下列命題:
①既不是奇函數,也不是偶函數
②若是三角形的內角,則
是增函數
③若是三角形的內角, 則
有最大值而無最小值
④的最小正周期是
其中真命題的序號是( )
A.①②B.①③C.②③D.②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com