精英家教網 > 高中數學 > 題目詳情
已知等差數列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )
A.12B.14C.16D.18
B
Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知首項都是1的兩個數列),滿足.
(1)令,求數列的通項公式;
(2)若,求數列的前n項和

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知各項均不相等的等差數列{an}的前n項和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項.
(1)求數列{an}的通項公式與前n項和Sn;
(2)設Tn為數列{}的前n項和,問是否存在常數m,使Tn=m[],若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列{an}的各項均為正數,前n項和為Sn,且滿足2Sn+n-4.
(1)求證{an}為等差數列;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

數列的前項和為,且和1的等差中項,等差數列滿足
(1)求數列,的通項公式;
(2)設,數列的前n項和為,若對一切恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知等差數列滿足:,且、成等比數列.
(1)求數列的通項公式.
(2)記為數列的前項和,是否存在正整數,使得若存在,求的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

定義:稱為n個正數x1,x2,…,xn的“平均倒數”,若正項數列{cn}的前n項的“平均倒數”為,則數列{cn}的通項公式為cn=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知數列{an}的前n項和Sn滿足:Sn+Sm=Sn+m,且a1=1,那么a10=(  )
A.1B.9C.10D.55

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知數列,若,記的前項和,則使達到最大的值為(  )
A.13B.12C.11D.10

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视