精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,將的圖象向右平移兩個單位長度,得到函數的圖象.

(1)求函數的解析式;

(2)若方程上有且僅有一個實根,求的取值范圍;

(3)若函數的圖象關于直線對稱,設,已知對任意的恒成立,求的取值范圍.

【答案】(1)(2)(3)

【解析】

試題分析】(1)借助平移的知識可直接求得函數解析式;(2)先換元將問題進行等價轉化為有且只有一個根,再構造二次函數運用函數方程思想建立不等式組分析求解;(3)先依據題設條件求出函數的解析式,再運用不等式恒成立求出函數的最小值:

解:(1)

(2)設,則,原方程可化為

于是只須上有且僅有一個實根,

法1:設,對稱軸t=,則 ① , 或

由①得 ,即,

由②得 無解, ,則。

法2:由 ,得,,,

,則,,記,

上是單調函數,因為故要使題設成立,

只須,即,

從而有

(3)設的圖像上一點,點關于的對稱點為,

由點的圖像上,所以,

于是..

,化簡得,設,恒成立.

解法1:設,對稱軸

③ 或

由③得, 由④得,即

綜上,.

解法2:注意到,分離參數得對任意恒成立

,即

可證上單調遞增

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知命題a2x2+ax﹣2=0在[﹣1,1]上有解;命題q:只有一個實數x滿足不等式x2+2ax+2a≤0,若命題“p”或“q”是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于,的點

(1)證明:平面平面;

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓C: (a>2 )的右焦點為F,右頂點為A,上頂點為B,且滿足 ,其中O 為坐標原點,e為橢圓的離心率.
(1)求橢圓C的方程;
(2)設點P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:|AN||BM|為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(題文)已知函數.

(1)若曲線處的切線與直線垂直,求的值;

(2)討論函數的單調性;若存在極值點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知F2、F1是雙曲線 (a>0,b>0)的上、下焦點,點F2關于漸近線的對稱點恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為(
A.3
B.
C.2
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高考數學試題中共有10道選擇題,每道選擇題都有4個選項,其中有且僅有一個是正確的.評分標準規定:“每題只選1項,答對得5分,不答或答錯得0分.”某考生每道題都給出了一個答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(1)得50分的概率;
(2)得多少分的可能性最大;
(3)所得分數ξ的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:在△ABC中,若AB<BC,則sinC<sinA;命題q:已知a∈R,則“a>1”是“ <1”的必要不充分條件.在命題p∧q,p∨q,(¬p)∨q,(¬p)∧q中,真命題個數為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1中,側面ABB1A1為正方形,延長AB到D,使得AD=BD,平面AA1C1C⊥平面ABB1A1 , A1C1= AA1 , ∠C1A1A=

(1)若E,F分別為C1B1 , AC的中點,求證:EF∥平面ABB1A1;
(2)求平面A1B1C1與平面CB1D所成的銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视