精英家教網 > 高中數學 > 題目詳情

已知三個實數a、b、c成等差數列,且它們的和為12,又a+2、b+2、c+5成等比數列,求a、b、c的值。

 

【答案】

a1=1,b1=4,c1=7;        a2=10,b2=4,c2=-2。

【解析】

試題分析:解:由題意可得2b=a+c,且a+b+c=12,

所以b=4,a+c=8,即c=8-a  ①

又a+2、b+2、c+5成等比數列,

所以(4+2)2=(a+2)(c+5),

化簡可得ac+5a+2c+10=36  ②

把①代入②可得a2-11a+10=0

解得a=1或a=10,代回①分別可得b=7或-2

故a、b、c的值分別為1,4,7;或 10,4,-2

考點:等差數列和等比數列

點評:本題考查等差數列和等比數列的綜合應用,涉及一元二次方程的解法,屬基礎題.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知三個實數a,b,c成等比數列,且a+b+c=m(m是正常數),則b的取值范圍為
[-m,0)∪(0,
m
3
]
[-m,0)∪(0,
m
3
]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三個實數a、b、c成等差數列,且它們的和為12,又a+2、b+2、c+5成等比數列,求a、b、c的值.

查看答案和解析>>

科目:高中數學 來源:2015屆廣東省梅州市高一下第一次質檢數學卷(解析版) 題型:解答題

已知三個實數a、b、c成等差數列,且它們的和為12,又a+2、b+2、c+5成等比數列,求a、b、c的值。

 

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省徐州一中高三數學提優練習(15)(解析版) 題型:解答題

已知三個實數a,b,c成等比數列,且a+b+c=m(m是正常數),則b的取值范圍為   

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视