【題目】完成下列進位制之間的轉化.
(1)10231(4)=________(10);
(2)235(7)=________(10);
(3)137(10)=________(6);
(4)1231(5)=________(7);
(5)213(4)=________(3);
(6)1010111(2)=________(4).
【答案】 (1)301 (2)124 (3)345 (4)362 (5)1110 (6)1113
【解析】(1)10231(4)=1×44+0×43+2×42+3×4+1=301(10);
(2)235(7)=2×72+3×7+5=124(10);
(3)
所以137(10)=345(6);
(4)1231(5)=1×53+2×52+3×5+1=191(10),
所以1231(5)=362(7);
(5)213(4)=2×42+1×4+3=39(10),
所以213(4)=1110(3);
(6)1010111(2)=1×26+0×25+1×24+0×23+1×22+1×2+1=87(10),
所以1010111(2)=1113(4).
科目:高中數學 來源: 題型:
【題目】已知:以點C(t, )(t∈R,t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點.
(1)當t=2時,求圓C的方程;
(2)求證:△OAB的面積為定值;
(3)設直線y=﹣2x+4與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,且Sn=2n2+n,n∈N,數列{bn}滿足an=4log2bn+3,n∈N.
(1)求an,bn;
(2)求數列{anbn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 =(
sinx,2),
=(2cosx,cos2x),函數f(x)=
,
(1)求函數f(x)的值域;
(2)在△ABC中,角A,B,C和邊a,b,c滿足a=2,f(A)=2,sinB=2sinC,求邊c.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com