精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,.

1)設函數,討論的極值點個數,并求出相應極值;

2)若,且,求證:.

【答案】1)極值點個數見解析,相應極值見解析;(2)證明見解析

【解析】

1)求出的導函數,對a進行分類討論求解討論極值點;

2)根據導函數得,結合上單調遞增,即可得證.

1)函數

,

,

,解得,

時,;當時,.

①若時,上單調遞增,在上單調遞減,

上單調遞增,2個極值點.

∴當時,函數有極小值,極小值為;

時,函數有極大值,極大值為.

②當時,上單調遞增,

上單調遞減,在上單調遞增,2個極值點,

∴當時,函數有極大值,極大值為;

時,函數有極小值,極小值為.

③當時,,

R上單調遞增,無極值點,故無極值.

2)∵,

,

上單調遞增,

時,有,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.

(Ⅰ)求實數的值;

(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人在相同條件下各射擊次,每次中靶環數情況如圖所示:

1)請填寫下表(先寫出計算過程再填表):

平均數

方差

命中環及環以上的次數

2)從下列三個不同的角度對這次測試結果進行

①從平均數和方差相結合看(分析誰的成績更穩定);

②從平均數和命中環及環以上的次數相結合看(分析誰的成績好些);

③從折線圖上兩人射擊命中環數的走勢看(分析誰更有潛力).

參考公式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列五個命題:

①已知直線、和平面,若,,則;

②平面上到一個定點和一條定直線的距離相等的點的軌跡是一條拋物線;

③雙曲線,則直線與雙曲線有且只有一個公共點;

④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直;

⑤過的直線與橢圓交于、兩點,線段中點為,設直線斜率為,直線的斜率為,則等于.

其中,正確命題的序號為_______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右頂點為,為橢圓上異于的動點,設直線的斜率分別為,且.

1)求橢圓的離心率;

2)當橢圓內切于圓時,設動直線與橢圓相交于兩點,為坐標原點,若,問:的面積是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究某學科成績是否與學生性別有關,采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規定80分以上為優分(含80分).

)(i)請根據圖示,將2×2列聯表補充完整;


優分

非優分

總計

男生




女生




總計



50

ii)據此列聯表判斷,能否在犯錯誤概率不超過10%的前提下認為該學科成績與性別有關?

)將頻率視作概率,從高三年級該學科成績中任意抽取3名學生的成績,求至少2名學生的成績為優分的概率.

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】科技創新能力是決定綜合國力和國際競爭力的關鍵因素,也是推動經濟實現高質量發展的重要支撐,而研發投入是科技創新的基本保障,下圖是某公司從2010年到2019年這10年研發投入的數據分布圖:

其中折線圖是該公司研發投入占當年總營收的百分比,條形圖是當年研發投入的數值(單位:十億元).

(I)2010年至2019年中隨機選取一年,求該年研發投入占當年總營收的百分比超過10%的概率;

(II)2010年至2019年中隨機選取兩個年份,設X表示其中研發投入超過500億元的年份的個數,求X的分布列和數學期望;

(III)根據圖中的信息,結合統計學知識,判斷該公司在發展的過程中是否比較重視研發,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數aRa0.

1)當a時,求曲線yfx)在點(1,f1))處的切線方程;

2)討論函數fx)的單調性與單調區間;

3)若yfx)有兩個極值點x1,x2,證明:fx1+fx2)<9lna.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數的極值點;

2)定義:若函數的圖像與直線有公共點,我們稱函數有不動點.這里。,若,如果函數存在不動點,求實數取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视