【題目】已知x,y,z均為正數.
(1)若xy<1,證明:|x+z||y+z|>4xyz;
(2)若=
,求2xy2yz2xz的最小值.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,
,
,
,
,
,
.
(I)求異面直線與
所成角的余弦值;
(II)求證: 平面
;
(Ⅲ)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,人們支付方式發生巨大轉變,使用移動支付購買商品已成為一部分人的消費習慣,某企業為了解該企業員工兩種移動支付方式的使用情況,從全體員工中隨機抽取了100人,統計了他們在某個月的消費支出情況,發現樣本中
兩種支付方式都沒有使用過的有5人;使用了
兩種方式支付的員工,支付金額和相應人數分布如下表,依據數據估算:若從該公司隨機抽取1名員工,則該員工在該月
兩種支付方式都使用過的概率為_______________
支付金額(元) 支付方式 | 大于2000 | ||
使用 | 18人 | 29人 | 23人 |
使用 | 10人 | 24人 | 21人 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸為
,
分別為橢圓C的左、右頂點,P是橢圓C上異于
的動點,且
面積的最大值為
.
(1)求橢圓C的方程;
(2)過點的直線l交橢圓C于
兩點,D為橢圓上一點,O為坐標原點,且滿足
,其中
,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數,
,
.
(1)設,假設
在
上遞減,求
的取值范圍;
(2)假設,求證:
.
(3)是否存在實數,使得
恒成立,假設存在,求出
的取值范圍,假設不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+bx(a>0,b>0,a≠1,b≠1).設a=2,b=.
(1)求方程f(x)=2的根;
(2)若對于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求實數m的最大值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產的產品中分正品與次品,正品重,次品重
,現有5袋產品(每袋裝有10個產品),已知其中有且只有一袋次品(10個產品均為次品)如果將5袋產品以1~5編號,第
袋取出
個產品(
),并將取出的產品一起用秤(可以稱出物體重量的工具)稱出其重量
,若次品所在的袋子的編號是2,此時的重量
_________
;若次品所在的袋子的編號是
,此時的重量
_______
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了減輕家庭困難的高中學生的經濟負擔,讓更多的孩子接受良好的教育,國家施行高中生國家助學金政策,普通高中國家助學金平均資助標準為每生每年1500元,具體標準由各地結合實際在1000元至3000元范圍內確定,可以分為兩或三檔.各學校積極響應政府號召,通過各種形式宣傳國家助學金政策.為了解某高中學校對國家助學金政策的宣傳情況,擬采用隨機抽樣的方法抽取部分學生進行采訪調查.
(1)若該高中學校有2000名在校學生,編號分別為0001,0002,0003,…,2000,請用系統抽樣的方法,設計一個從這2000名學生中抽取50名學生的方案.(寫出必要的步驟)
(2)該校根據助學金政策將助學金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級共評定出3個1檔,2個2檔,1個3檔,若從該班獲得助學金的學生中選出2名寫感想,求這2名同學不在同一檔的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com