精英家教網 > 高中數學 > 題目詳情

【題目】東莞市某高級中學在今年4月份安裝了一批空調,關于這批空調的使用年限 (單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統計資料如下:

使用年限 ()

1

2

3

4

5

維護費用(萬元)

6

7

7.5

8

9

請根據以上數據,用最小二乘法原理求出維護費用關于的線性回歸方程

若規定當維護費用超過13.1萬元時,該批空調必須報廢,試根據(1)的結論求該批空調使用年限的最大值.

參考公式:最小二乘估計線性回歸方程中系數計算公式:

, ,

【答案】1;(2年限的最大值為11

【解析】試題分析:首先根據表格里的數據計算、、,或計算,求出 ,再利用公式,求出,得到維護費用關于的線性回歸方程,規定當維護費用超過13.1萬元時,該批空調必須報廢,只需小于或等于13.1 萬元,解不等式求出空調使用年限的最大值.

試題解析:

, ,

,

, ,

則維護費關于的線性回歸方程為;

2, ;

該批空調使用年限的最大值為11年.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知中心在坐標原點、焦點在x軸上的橢圓,它的離心率為且與直線xy10相交于M、N兩點若以MN為直徑的圓經過坐標原點,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某品牌電視生產廠家有A,B兩種型號的電視機參加了家電下鄉活動,若廠家對AB兩種型號的電視機的投放金額分別為p,q萬元,農民購買電視機獲得的補貼分別為p, ln q萬元,已知A,B兩種型號的電視機的投放總額為10萬元,且A,B兩種型號的電視機的投放金額均不低于1萬元,請你制定一個投放方案,使得在這次活動中農民得到的補貼最多,并求出最大值.(精確到0.1,參考數據:ln 41.4)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一臺機器由于使用時間較長,生產的零件有一些缺損.按不同轉速生產出來的零件有缺損的統計數據如下表所示:

轉速x(轉/秒)

16

4

12

8

每小時生產有缺損零件數y(個)

11

9

8

5

(1)作出散點圖;

(2)如果yx線性相關,求出回歸直線方程;

(3)若實際生產中,允許每小時的產品中有缺損的零件最多為10個,那么,機器的運轉速度應控制在什么范圍內?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對函數 ,有下列說法:
①f(x)的周期為4π,值域為[﹣3,1];
②f(x)的圖象關于直線 對稱;
③f(x)的圖象關于點 對稱;
④f(x)在 上單調遞增;
⑤將f(x)的圖象向左平移 個單位,即得到函數 的圖象.
其中正確的是 . (填上所有正確說法的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校藝術節對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,下列四個正方體圖形中,A、B為正方體的兩個頂點,M、N、P分別為其所在棱的中點,能得出AB∥平面MNP的圖形序號是( 。

A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求證:BC⊥AC1;
(2)試探究滿足EF∥平面A1ABB1的點F的位置,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線,直線傾斜角是且過拋物線的焦點,直線被拋物線截得的線段長是16,雙曲線 的一個焦點在拋物線的準線上,則直線軸的交點到雙曲線的一條漸近線的距離是( )

A. 2 B. C. D. 1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视