【題目】已知橢圓的對稱中心為原點
,焦點在
軸上,焦距為
,點
在該橢圓上.
(1)求橢圓的方程;
(2)直線與橢圓交于
兩點,
點位于第一象限,
是橢圓上位于直線
兩側的動點.當點
運動時,滿足
,問直線
的斜率是否為定值,請說明理由.
科目:高中數學 來源: 題型:
【題目】曲線是平面內到直線
和直線
的距離之積等于常數
(
)的點的軌跡,下列四個結論:
①曲線過點
;
②曲線關于點
成中心對稱;
③若點在曲線
上,點
、
分別在直線
、
上,則
不小于
;
④設為曲線
上任意一點,則點
關于直線
,點
及直線
對稱的點分別為
、
、
,則四邊形
的面積為定值
;
其中,所有正確結論的序號是________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某學校研究性課題《什么樣的活動最能促進同學們進行垃圾分類》向題的統計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結論錯誤的是( 。
A. 回答該問卷的總人數不可能是100個
B. 回答該問卷的受訪者中,選擇“設置分類明確的垃圾桶”的人數最多
C. 回答該問卷的受訪者中,選擇“學校團委會宣傳”的人數最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數比選擇“學校要求”的少8個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公園為了美化環境和方便顧客,計劃建造一座圓弧形拱橋,已知該橋的剖面如圖所示,共包括圓弧形橋面和兩條長度相等的直線型路面
、
,橋面跨度
的長不超過
米,拱橋
所在圓的半徑為
米,圓心
在水面
上,且
和
所在直線與圓
分別在連結點
和
處相切.設
,已知直線型橋面每米修建費用是
元,弧形橋面每米修建費用是
元.
(1)若橋面(線段、
和弧
)的修建總費用為
元,求
關于
的函數關系式;
(2)當為何值時,橋面修建總費用
最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究高二階段男生、女生對數學學科學習的差異性,在高二年級所有學生中隨機抽取25名男生和25名女生,計算他們高二上學期期中、期末和下學期期中、期末的四次數學考試成績的各自的平均分,并繪制成如圖所示的莖葉圖.
(1)請根據莖葉圖判斷,男生組與女生組哪組學生的數學成績較好?請用數據證明你的判斷;
(2)以樣本中50名同學數學成績的平均分x0(79.68分)為分界點,將各類人數填入如下的列聯表:
分數 性別 | 高于或等于x0 | 低于x0 | 合計 |
男生 | |||
女生 | |||
合計 |
(3)請根據(2)中的列聯表,判斷能否有99%的把握認為數學學科學習能力與性別有關?
附:K2=
P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的質量以其質量指標值衡量,并依據質量指標值劃分等級如下表:
從某企業生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據以上抽樣調查數據,能否認為該企業生產的這種產品符合“一、二等品至少要占全部產品”的規定?
(2)在樣本中,按產品等級用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(3)該企業為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值近似滿足
,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數a的取值范圍為( )
A. (0,1) B. C.
D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com