精英家教網 > 高中數學 > 題目詳情

已知直線L:x-2y-5=0與圓C:x2+y2=50.求:
(1)交點A,B的坐標;(2)△AOB的面積

(1)A,B的坐標為(-5,-5),(7,1)
(2)15

解析試題分析:.解:(1)直線L:x-2y-5=0與圓C:x2+y2=50.的交點即下列方程組的解
x-2y-5=0     解方程組得:x=-5      x=7
x2+y2=50                   y=-5      y=1
所以交點A,B的坐標為(-5,-5),(7,1)
(2)設直線L:x-2y-5=0與x軸的交點為E,則E(5,0)
S△AOB= S△AOE +S△EOB
=|yA||OE|+|yB||OE|
=(|yA|+|yB|)|OE|
=×6×5=15
考點:直線與圓的位置關系
點評:主要是考查了直線與圓的位置關系以及三角形面積的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,離心率。它有一個頂點恰好是拋物線=4y的焦點。過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且。
(Ⅰ)求動點C的軌跡E的方程;
(Ⅱ)設橢圓的左右頂點分別為A,B,直線AC(C點不同于A,B)與直線交于點R,D為線段RB的中點。試判斷直線CD與曲線E的位置關系,并證明你的結論。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L⊥直線AB。點P是圓O上異于A、B的任意一點,直線PA、PB分別交L與M、N點。
試建立適當的直角坐標系,解決下列問題:

(1)若∠PAB=30°,求以MN為直徑的圓方程;
(2)當點P變化時,求證:以MN為直徑的圓必過圓O內的一定點。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于常數λ(λ>0).求動點M的軌跡方程,說明它表示什么曲線。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,直線與圓相交于兩點,且A點在第一象限.
(1)求;
(2)設()是圓上的一個動點,點關于原點的對稱點為,點關于軸的對稱點為,如果直線軸分別交于.問是否為定值?若是,求出定值,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓及點
(1)在圓上,求線段的長及直線的斜率;
(2)若為圓上任一點,求的最大值和最小值;
(3)若實數滿足,求的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

內有一點,為過點且傾斜角為的弦,
(1)當=時,求的長;
(2)當弦被點平分時,寫出直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,直線
(Ⅰ)若相切,求的值;
(Ⅱ)是否存在值,使得相交于兩點,且(其中為坐標原點),若存在,求出,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標系與參數方程
已知曲線的極坐標方程是,曲線的參數方程是
是參數).
(1)寫出曲線的直角坐標方程和曲線的普通方程;
(2)求的取值范圍,使得,沒有公共點.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视