精英家教網 > 高中數學 > 題目詳情
已知m∈R,復數Z=m(m-1)+(m-1)i當m為何值時,
(1)Z∈R;     (2)Z是虛數;         (3)Z是純虛數.
分析:(1)根據復數的虛部等于0,求出m的值.
(2)根據復數的虛部不等于0,求出m的值.
(3)由Z是純虛數,可得實部等于0、虛部不等于0,求出m的值.
解答:解:(1)由于 m∈R,復數Z=m(m-1)+(m-1)i,
故當m-1=0,即m=1時,Z∈R.
(2)由Z是虛數可得,m-1≠0,即m≠1.
故當m≠1時,Z是虛數.
(3)由Z是純虛數,可得m(m-1)=0,且 m-1≠0,解得 m=0.
故當m=0時,Z是純虛數.
點評:本題主要考查復數的基本概念,復數的代數表示法及其幾何意義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知m∈R,復數z=
m(m-2)m-1
+(m2+2m-3)i
,若z對應的點位于復平面的第二象限,則m的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知m∈R,復數z=
m-2m-1
+(m2+2m-3)i
,當m為何值時.
(1)z∈R;
(2)z是純虛數; 
(3)z對應的點位于復平面的第二象限.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知m∈R,復數z=(m2-5m+6)+(m2-3m)i.
(Ⅰ)實數m取什么值時?復數z為純虛數.
(Ⅱ)實數m取值范圍是什么時?復數z對應的點在第四象限.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知m∈R,復數z=
m(m+2)
m-1
+(m2+2m-3)i
,當m為何值時,
(1)z∈R;  (2)z是虛數;  (3)z是純虛數; (4)
.
z
=
1
2
+4i

查看答案和解析>>

科目:高中數學 來源: 題型:

已知m∈R,復數z=m2+4m+3+(m2+2m-3)i,當m=
-1
-1
時,z是純虛數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视