【題目】在直角坐標系xOy中,圓C1和C2的參數方程分別是 (φ為參數)和
(φ為參數),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=a與圓C1的交點為O、P,與圓C2的交點為O、Q,求|OP||OQ|的最大值.
【答案】
(1)解:圓C1 (φ為參數),
轉化成直角坐標方程為:(x﹣2)2+y2=4
即:x2+y2﹣4x=0
轉化成極坐標方程為:ρ2=4ρcosθ
即:ρ=4cosθ
圓C2 (φ為參數),
轉化成直角坐標方程為:x2+(y﹣1)2=1
即:x2+y2﹣2y=0
轉化成極坐標方程為:ρ2=2ρsinθ
即:ρ=2sinθ
(2)解:射線OM:θ=α與圓C1的交點為O、P,與圓C2的交點為O、Q
則:P(2+2cosα,2sinα),Q(cosα,1+sinα)
則:|OP|= =
,
|OQ|= =
則:|OP||OQ|=
=
設sinα+cosα=t( )
則:
則關系式轉化為:
4 =
由于:
所以:(|OP||OQ|)max=
【解析】(1)首先把兩圓的參數方程轉化成直角坐標方程,再把直角坐標方程為轉化成極坐標方程.(2)根據圓的坐標形式.利用兩點間的距離公式,再利用換元法進一步求出最值.
科目:高中數學 來源: 題型:
【題目】如圖,圓的半徑為2,點
是圓
的六等分點中的五個點.
(1)從中隨機取三點構成三角形,求這三點構成的三角形是直角三角形的概率;
(2)在圓上隨機取一點
,求
的面積大于
的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤200時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱中,
平面
,
,
,
,
,
為
的中點.
(Ⅰ)求四棱錐的體積;
(Ⅱ)設點在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長度;
(Ⅲ)判斷線段上是否存在一點
,使得
?(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某糧庫擬建一個儲糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現要設計其底面半徑和上部圓錐的高,若設圓錐的高為
,儲糧倉的體積為
.
(1)求關于
的函數關系式;(圓周率用
表示)
(2)求為何值時,儲糧倉的體積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:直線,一個圓與
軸正半軸與
軸正半軸都相切,且圓心
到直線
的距離為
.
()求圓的方程.
()
是直線
上的動點,
,
是圓的兩條切線,
,
分別為切點,求四邊形
的面積的最小值.
()圓與
軸交點記作
,過
作一直線
與圓交于
,
兩點,
中點為
,求
最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com