【題目】楊輝,字謙光,南宋時期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數表,稱之為“開方作法本源”圖,并說明此表引自11世紀中葉(約公元1050年)賈憲的《釋鎖算術》,并繪畫了“古法七乘方圖”.故此,楊輝三角又被稱為“賈憲三角”.楊輝三角是一個由數字排列成的三角形數表,一般形式如下:
基于上述規律,可以推測,當時,從左往右第22個數為_____________.
科目:高中數學 來源: 題型:
【題目】已知,
(1)若展開式中第5項,第6項與第7項的二項式系數成等差數列,求展開式中二項式系數最大項
的系數;
(2)若展開式前三項的二項式系數和等于79,求展開式中系數最大的項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為
.
(1)求直線l的普通方程和圓C的直角坐標方程;
(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA||PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
與曲線
,(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系.
(1)寫出曲線,
的極坐標方程;
(2)在極坐標系中,已知與
,
的公共點分別為
,
,
,當
時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱各條棱的長度均相等,
為
的中點,
分別是線段
和線段
的動點(含端點),且滿足
,當
運動時,下列結論中不正確的是
A. 在內總存在與平面
平行的線段
B. 平面平面
C. 三棱錐的體積為定值
D. 可能為直角三角形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點
,
與短軸的一個端點構成一個等邊三角形,且直線
與圓
相切.
(1)求橢圓的方程;
(2)已知過橢圓的左頂點
的兩條直線
,
分別交橢圓
于
,
兩點,且
,求證:直線
過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知長方形中,
,
,現將長方形沿對角線
折起,使
,得到一個四面體
,如圖所示.
(1)試問:在折疊的過程中,異面直線與
能否垂直?若能垂直,求出相應的
的值;若不垂直,請說明理由;
(2)當四面體體積最大時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求的普通方程和
的直角坐標方程;
(2)直線與
軸的交點為
,經過點
的直線
與曲線
交于
兩點,若
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】癌癥是迄今為止人類尚未攻克的疾病之一,目前,癌癥只能盡量預防.某醫學中心推出了一種抗癌癥的制劑,現對20位癌癥病人,進行醫學試驗測試藥效,測試結果分為“病人死亡”和“病人存活”,現對測試結果和藥物劑量(單位:)進行統計,規定病人在服用
(包括
)以上為“足量”,否則為“不足量”,統計結果顯示,這20病人
中“病人存活”的有13位,對病人服用的藥物劑量統計如下表:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量/ | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
已知“病人存活”,但服用的藥物劑量不足的病人共1位.
(1)完成下列列聯表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為“病人存活”與服用藥物的劑量足量有關?
服用藥物足量 | 服用藥物不足量 | 合計 | |
病人存活 | 1 | ||
病人死亡 | |||
合計 | 20 |
(2)若在該樣本“服用藥物劑量不足”的病人中隨機抽取3位,求這三人中恰有1位“病人存活”的概率.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com