精英家教網 > 高中數學 > 題目詳情
兩直線l1:y=k1xb1,l2:y=k2xb2垂直的充要條件是___________.兩直線A1xB1y+  C1=0與A2xB2yC2=0垂直的充要條件是___________.

k1k2=-A1A2B1B2=0

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓┍的方程為
x2
a2
+
y2
b2
=1(a>b>0),點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足
PM
=
1
2
PA
+
PB
),求點M的坐標;
(2)設直線l1:y=k1x+p交橢圓┍于C、D兩點,交直線l2:y=k2x于點E.若k1•k2=-
b2
a2
,證明:E為CD的中點;
(3)對于橢圓┍上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓┍上存在不同的兩個交點P1、P2滿足
PP1
+
PP2
=
PQ
,寫出求作點P1、P2的步驟,并求出使P1、P2存在的θ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓Γ的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,A(0,b)、B(0,-b)和Q(a,0)為Γ的三個頂點.
(1)若點M滿足
AM
=
1
2
(
AQ
+
AB
)
,求點M的坐標;
(2)設直線l1:y=k1x+p交橢圓Γ于C、D兩點,交直線l2:y=k2x于點E.若k1k2=-
b2
a2
,證明:E為CD的中點;
(3)設點P在橢圓Γ內且不在x軸上,如何構作過PQ中點F的直線l,使得l與橢圓Γ的兩個交點P1、P2滿足
PP1
+
PP2
=
PQ
PP1
+
PP2
=
PQ
?令a=10,b=5,點P的坐標是(-8,-1),若橢圓Γ上的點P1、P2滿足
PP1
+
PP2
=
PQ
,求點P1、P2的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中有兩定點F1(0,
3
)
,F2(0,-
3
)
,若動點M滿足|
MF1
|+|
MF2
|=4
,設動點M的軌跡為C.
(1)求曲線C的方程;
(2)設直線l:y=kx+t交曲線C于A、B兩點,交直線l1:y=k1x于點D,若k•k1=-4,證明:D為AB的中點.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩條直線l1:y-3=k1(x-1),l2:y-3=k2(x-2),則下列說法正確的是( 。
A、l1與l2一定相交B、l1與l2一定平行C、l1與l2一定相交或平行D、以上說法都不對

查看答案和解析>>

科目:高中數學 來源:2010年全國普通高等學校招生統一考試、文科數學(上海卷) 題型:044

已知橢圓的方程為=1(a>b>0),A(0,b)、B(0,-b)和Q(a,0)為的三個頂點.

(1)若點M滿足,求點M的坐標;

(2)設直線l1yk1xp交橢圓CD兩點,交直線l2yk2x于點E.若k1·k2,證明:ECD的中點;

(3)設點P在橢圓內且不在x軸上,如何構作過PQ中點F的直線l,使得l與橢圓的兩個交點P1,P2滿足?令a=10,b=5,點P的坐標是(-8,-1).若橢圓上的點P1,P2滿足,求點P1,P2的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视