精英家教網 > 高中數學 > 題目詳情

【題目】若f(x)=ex+aex為偶函數,則f(x﹣1)< 的解集為(
A.(2,+∞)
B.(0,2)
C.(﹣∞,2)
D.(﹣∞,0)∪(2,+∞)

【答案】B
【解析】解:∵f(x)=ex+aex為偶函數,∴f(﹣x)=ex+aex=f(x)=ex+aex , ∴a=1,
∴f(x)=ex+ex , 在(0,+∞)上單調遞增,在(﹣∞,0)上單調遞減,
則由f(x﹣1)< =e+ ,∴﹣1<x﹣1<1,
求得0<x<2,
故選:B.
【考點精析】根據題目的已知條件,利用函數奇偶性的性質的相關知識可以得到問題的答案,需要掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將一個半徑為3分米,圓心角為α(α∈(0,2π))的扇形鐵皮焊接成一個容積為V立方分米的圓錐形無蓋容器(忽略損耗).
(1)求V關于α的函數關系式;
(2)當α為何值時,V取得最大值;
(3)容積最大的圓錐形容器能否完全蓋住桌面上一個半徑為0.5分米的球?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中在 上為減函數的是(
A.y=2cos2x﹣1
B.y=﹣tanx
C.
D.y=sin2x+cos2x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,是兩條不同直線,是兩個不同平面,則下列命題正確的是 ( )

A. ,垂直于同一平面,則平行

B. ,則

C. ,不平行,則在內不存在與平行的直線

D. ,不平行,則不可能垂直于同一平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設P(x0,y0)是函數f(x)圖象上任意一點,且y02≥x02,則f(x)的解析式可以是_____.(填序號)

①f(x)=x﹣②f(x)=ex﹣1(e≈2.718,是一個重要常數)③f(x)=x+④y=x2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的是(  )

A. 有兩個平面互相平行,其余各面都是平行四邊形的多面體是棱柱

B. 四棱錐的四個側面都可以是直角三角形

C. 有兩個面互相平行,其余各面都是梯形的多面體是棱臺

D. 以三角形的一條邊所在直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體叫圓錐

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數是奇函數.

(1)求實數的值;

(2)判斷的單調性并用定義證明;

(3)已知不等式恒成立, 求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的空間幾何體中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為60°,且點E在平面ABC上的射影落在∠ABC的平分線上.

(1)求證:DE∥平面ABC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點、焦點在x軸上的橢圓C1與雙曲線C2有共同的焦點,設左右焦點分別為F1,F2,P是C1與C2在第一象限的交點, PF1F2是以PF1為底邊的等腰三角形,若橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是( )

A. (,+) B. (,+) C. (,+) D. (0,+)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视