【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°
(I)求證:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.
【答案】
證明:(Ⅰ)取AD的中點E,連接PE,BE,BD.
∵PA=PD=DA,四邊形ABCD為菱形,且∠BAD=60°,
∴△PAD和△ABD為兩個全等的等邊三角形,
則PE⊥AD,BE⊥AD,∴AD⊥平面PBE,
又PB平面PBE,∴PB⊥AD;
(Ⅱ)解:在△PBE中,由已知得,PE=BE=,PB=
,則PB2=PE2+BE2 ,
∴∠PEB=90°,即PE⊥BE,又PE⊥AD,∴PE⊥平面ABCD;
以點E為坐標原點,分別以EA,EB,EP所在直線為x,y,z軸,建立如圖所示空間直角坐標系,
則E(0,0,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,
),
則=(1,0,
),
=(﹣1,
,0),
由題意可設平面APD的一個法向量為=(0,1,0);
設平面PDC的一個法向量為=(x,y,z),
由 得:,
令y=1,則x=,z=﹣1,∴
=(
,1,﹣1);
則=1,∴cos<
,
>=
=
=
,
由題意知二面角A﹣PD﹣C的平面角為鈍角,
所以,二面角A﹣PD﹣C的余弦值為﹣
【解析】(Ⅰ)證明:取AD的中點E,連接PE,BE,BD.證明AD⊥平面PBE,然后證明PB⊥AD;
(Ⅱ)以點E為坐標原點,分別以EA,EB,EP所在直線為x,y,z軸,建立如圖所示空間直角坐標系,求出平面APD的一個法向量為=(0,1,0),平面PDC的一個法向量為
, 利用向量的數量積求解二面角A﹣PD﹣C的余弦值.
【考點精析】解答此題的關鍵在于理解直線與平面垂直的性質的相關知識,掌握垂直于同一個平面的兩條直線平行.
科目:高中數學 來源: 題型:
【題目】如圖,AB是圓O的直徑,弦CD⊥AB于點M,E是CD延長線上一點,AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于G.
(1)求證:△EFG為等腰三角形;
(2)求線段MG的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的參數方程(φ為參數).以O為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓C的極坐標方程;
(Ⅱ)直線l的極坐標方程是ρ(sinθ+cosθ)=3
, 射線OM:θ=
與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于回歸分析的說法中錯誤的有( )個
(1). 殘差圖中殘差點所在的水平帶狀區域越寬,則回歸方程的預報精確度越高.
(2). 回歸直線一定過樣本中心。
(3). 兩個模型中殘差平方和越小的模型擬合的效果越好。
(4) .甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二面角α﹣l﹣β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓
的離心率為
,長軸長為4,過橢圓的左頂點
作直線
,分別交橢圓和圓
于相異兩點
(1) 若直線的斜率為1,求
的值:
(2) 若,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com