精英家教網 > 高中數學 > 題目詳情
設函數,.
(1)若函數上單調遞增,求實數的取值范圍;
(2)求函數的極值點.
(3)設為函數的極小值點,的圖象與軸交于兩點,且,中點為,
求證:
(1);(2)詳見解析;(3)詳見解析.

試題分析:(1)先求,在恒成立,反解參數,轉化成恒成立問題,利用基本不等式求的最小值問題;
(2)先求函數的導數,因為,所以設,分情況討論在不同情況下,的根,通過來討論,主要分以及的情況,求出導數為0的值,判斷兩側的單調性是否改變,從而確定極值點;
(3),兩式相減,結合中點坐標公式,,表示出,設出的能表示正負的部分函數,再求導數,利用導數得出單調性,從而確定.
試題解析:(1)
依題意得,在區間上不等式恒成立.
又因為,所以.所以,
所以實數的取值范圍是.                2分
(2),令
①顯然,當時,在恒成立,這時,此時,函數沒有極值點;          ..3分
②當時,
(。┊,即時,在恒成立,這時,此時,函數沒有極值點;          .4分
(ⅱ)當,即時,
易知,當時,,這時;
時,,這時;
所以,當時,是函數的極大值點;是函數的極小值點.
綜上,當時,函數沒有極值點;                    .6分
時,是函數的極大值點;是函數的極小值點.      8分
(Ⅲ)由已知得兩式相減,
得:       ①
,得       ②得①代入②,得

=                10分

上遞減,          12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)設x=0是f(x)的極值點,求m,并討論f(x)的單調性;
(2)當m≤2時,證明f(x)>0.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,
(1)求函數的單調區間;
(2)在區間內存在,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數是減函數的區間為 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數有兩個極值點,且,,則( )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知,使得成立,則實數的取值范圍是_______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,函數,若上是單調減函數,則的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數f(x)=2x+x3-2在區間(0,1)內的零點個數是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的單調遞增區間是      

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视