精英家教網 > 高中數學 > 題目詳情

已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在區間[0,2]上為減函數,求實數a的取值范圍.

(1)f(x)=x+
(2)(-∞,-4]

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知上的奇函數,且當時,.
(1)求的表達式;
(2)畫出的圖象,并指出的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.(精確到1輛/小時).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數定義在上,對任意的,且.
(1)求,并證明:
(2)若單調,且.設向量,對任意,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知都是實數,且
(1)求不等式的解集;
(2)若對滿足條件的所有實數都成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數g(x)=f(x)-mx (x∈R)是單調函數,求證:m≤0或m≥1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列的前項和,數列滿足
(1)求數列的通項公式;
(2)求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某公司以每噸10萬元的價格銷售某種產品,每年可售出該產品1000噸,若將該產品每噸的價格上漲x%,則每年的銷售數量將減少,該產品每噸的價格上漲百分之幾,可使銷售的總金額最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

市場營銷人員對過去幾年某商品的價格及銷售數量的關系作數據分析發現有如下規律:該商品的價格每上漲x%(x>0),銷售數量就減少kx%(其中k為正常數).目前該商品定價為每個a元,統計其銷售數量為b個.
(1)當k=時,該商品的價格上漲多少,才能使銷售的總金額達到最大?
(2)在適當的漲價過程中,求使銷售總金額不斷增加時k的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视