【題目】在數列中,
,且
.
(1)的通項公式為__________;
(2)在、
、
、
、
這
項中,被
除余
的項數為__________.
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,過點
且斜率為
的直線
與橢圓
交于
兩點,線段
的中點為
為坐標原點.
(1)證明:點在
軸的右側;
(2)設線段的垂直平分線與
軸、
軸分別相交于點
.若
與
的面積相等,求直線
的斜率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經過地鐵站的數量實施分段優惠政策,不超過站的地鐵票價如下表:
乘坐站數 | |||
票價(元) |
現有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過
站的概率分別為
,
;甲、乙乘坐超過
站的概率分別為
,
.
(1)求甲、乙兩人付費相同的概率;
(2)設甲、乙兩人所付費用之和為隨機變量,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,橢圓
:
的離心率為
,
是橢圓
的右焦點,直線
的斜率為
,
為坐標原點. 設過點
的動直線
與
相交于
兩點.
(1)求的方程;
(2)是否存在這樣的直線,使得
的面積為
,若存在,求出
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第28屆金雞百花電影節將于11月19日至23日在福建省廈門市舉辦,近日首批影展片單揭曉,《南方車站的聚會》《春江水暖》《第一次的離別》《春潮》《抵達之謎》五部優秀作品將在電影節進行展映.若從這五部作品中隨機選擇兩部放在展映的前兩位,則《春潮》與《抵達之謎》至少有一部被選中的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線 C 經過點 (2,3),它的漸近線方程為 y = ±.橢圓 C1與雙曲線 C有相同的焦點,橢圓 C1的短軸長與雙曲線 C 的實軸長相等.
(1)求雙曲線 C 和橢圓 C1 的方程;
(2)經過橢圓 C1 左焦點 F 的直線 l 與橢圓 C1 交于 A、B 兩點,是否存在定點 D ,使得無論 AB 怎樣運動,都有∠ADF = ∠BDF ?若存在,求出 D 點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率
,左、右焦點分別是
、
,且橢圓上一動點
到
的最遠距離為
,過
的直線
與橢圓
交于
,
兩點.
(1)求橢圓的標準方程;
(2)當以
為直角時,求直線
的方程;
(3)直線的斜率存在且不為0時,試問
軸上是否存在一點
使得
,若存在,求出
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解居民的家庭收入情況,某社區組織工作人員從該社區的居民中隨機抽取了戶家庭進行問卷調查,經調查發現,這些家庭的月收人在
元到
元之間,根據統計數據作出:
(1)經統計發現,該社區居民的家庭月收人(單位:百元)近似地服從正態分布
,其中
近似為樣本平均數.若
落在區間
的左側,則可認為該家庭屬“收入較低家庭" ,社區將聯系該家庭,咨詢收入過低的原因,并采取相應措施為該家庭提供創收途徑.若該社區
家庭月收入為
元,試判斷
家庭是否屬于“收人較低家庭”,并說明原因;
(2)將樣本的頻率視為總體的概率
①從該社區所有家庭中隨機抽取戶家庭,若這
戶家庭月收人均低于
元的概率不小于
,求
的最大值;
②在①的條件下,某生活超市贊助了該社區的這次調查活動,并為這次參與調在的家庭制定了贈送購物卡的活動,贈送方式為:家庭月收入低于的獲贈兩次隨機購物卡,家庭月收入不低于
的獲贈一次隨機購物卡;每次贈送的購物卡金額及對應的概率分別為:
贈送購物卡金額(單位:元) | |||
概率 |
則家庭預期獲得的購物卡金額為多少元?(結果保留整數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com