【題目】如圖,在五邊形中,
,
,
為
的中點,
.現把此五邊形
沿
折成一個
的二面角.
(1)求證:直線平面
;
(2)求二面角的平面角的余弦值
科目:高中數學 來源: 題型:
【題目】如圖所示,已知底角為45°的等腰梯形ABCD,底邊BC長為7 cm,腰長為2cm,當一條垂直于底邊BC(垂足為F)的直線l從B點開始由左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x(0≤x≤7),左邊部分的面積為y,求y與x之間的函數關系式,畫出程序框圖,并寫出程序.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,,
分別是通過某城市開發區中心O的兩條東西和南北走向的街道,連接M,N兩地間的鐵路是圓心在
上的一段圓。酎cM在點O正北方向,且
,點N到
,
的距離分別為5km和4km.
(1)建立適當的坐標系,求鐵路路線所在圓弧的方程.
(2)若該城市的某中學擬在點O正東方向選址建分校,考慮環境問題,要求校址到點O的距離大于4km,并且鐵路上任意一點到校址的距離不能小于km,求該校址距點O的最近距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養殖業的規模進行跟蹤調查,張三提供了該縣某山羊養殖場年養殖數量單位:萬只
與相應年份
序號
的數據表和散點圖
如圖所示
,根據散點圖,發現y與x有較強的線性相關關系,李四提供了該縣山羊養殖場的個數
單位:個
關于x的回歸方程
.
年份序號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養殖山羊 |
根據表中的數據和所給統計量,求y關于x的線性回歸方程
參考統計量:
,
;
試估計:
該縣第一年養殖山羊多少萬只
到第幾年,該縣山羊養殖的數量與第一年相比縮小了?
附:對于一組數據,
,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓經過點
,且點
到橢圓的兩焦點的距離之和為
.
(l)求橢圓的標準方程;
(2)若是橢圓
上的兩個點,線段
的中垂線
的斜率為
且直線
與
交于點
,
為坐標原點,求證:
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的參數方程為 (
為參數),以直角坐標系原點為極點,x軸非負半軸為極軸并取相同的單位長度建立極坐標系,
(1)求曲線C的極坐標方程,并說明其表示什么軌跡;
(2)若直線l的極坐標方程為,求曲線C上的點到直線l的最大距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點為拋物線
外一點,過點
作拋物線
的兩條切線
,
,切點分別為
,
.
(Ⅰ)若點為
,求直線
的方程;
(Ⅱ)若點為圓
上的點,記兩切線
,
的斜率分別為
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產量均具有隨機性,且互不影響,其具體情況如下表:
作物產量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市場價格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)設X表示在這塊地上種植1季此作物的利潤,求X的分布列;
(2)若在這塊地上連續3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合
.對于
,定義
與
之間的距離為
.
(Ⅰ),寫出所有
的
;
(Ⅱ)任取固定的元素,計算集合
中元素個數;
(Ⅲ)設,
中有
個元素,記
中所有不同元素間的距離的最小值為
.證明:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com