精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線的準線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且,當k最大時,點P恰好在以H,F為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____

【答案】1

【解析】

畫出拋物線,過拋物線準線于,連接,設直線的傾斜角為,由拋物線定義可得,由題意當k最大時,取得最小值.而當取得最小時,直線與拋物線相切,設出直線方程,聯立拋物線可求得,進而得切點坐標,即可由雙曲線定義及幾何性質求得離心率.

根據題意畫出拋物線,過拋物線準線于,連接.

由拋物線定義可知,由,(),

設直線的傾斜角為,則,

可得,

k最大時,取得最小值,且,

取得最小值時直線與拋物線相切,

設直線的方程為,

,化簡可得

因為直線與拋物線相切,則

解得,由可得,同時可得切點橫坐標為,

將切點橫坐標帶入拋物線可得,

因為點P恰好在以HF為焦點的雙曲線上,

由雙曲線定義及兩點間距離公式可得,

,

所以雙曲線離心率為

故答案為:1;.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知矩形ABCD,,AF⊥平面ABC,且.E為線段DC上一點,沿直線AE將△ADE翻折成,M的中點,則三棱錐體積的最小值是________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長為2的正方形,ACDGEF,且.

1)證明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為貫徹落實黨中央全面建設小康社會的戰略部署,某貧困地區的廣大黨員干部深入農村積極開展“精準扶貧”工作.經過多年的精心幫扶,截至2018年底,按照農村家庭人均年純收入8000元的小康標準,該地區僅剩部分家庭尚未實現小康.20197月,為估計該地能否在2020年全面實現小康,統計了該地當時最貧困的一個家庭201916月的人均月純收入,作出散點圖如下:

根據相關性分析,發現其家庭人均月純收入與時間代碼之間具有較強的線性相關關系(記20191月、2月……分別為,,…,依此類推),由此估計該家庭2020年能實現小康生活.20201月突如其來的新冠肺炎疫情影響了奔小康的進展,該家庭2020年第一季度每月的人均月純收入均只有201912月的預估值的.

1)求該家庭20203月份的人均月純收人;

2)如果以該家庭3月份人均月純收入為基數,以后每月的增長率為,為使該家庭2020年能實現小康生活,至少應為多少?(結果保留兩位小數)

參考數據:,,.

參考公式:線性回歸方程中,

,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區仍然存在封建傳統思想,頭胎的男女情況可能會影響生二孩的意愿,現隨機抽取某地200戶家庭進行調查統計.200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數為60.

1)完成下列列聯表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關;

生二孩

不生二孩

合計

頭胎為女孩

60

頭胎為男孩

合計

200

2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數的分布列及數學期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術·均輸》中有如下問題:今有五人分十錢,令上二人所得與下三人等,問各得幾何.其意思為已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數列,問五人各得多少錢?是古代的一種重量單位).這個問題中,甲所得為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)證明:f(x)≥5;

(2)若f(1)<6成立,求實數a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓Q經過定點,且與定直線相切(其中a為常數,且.記動圓圓心Q的軌跡為曲線C.

1)求C的方程,并說明C是什么曲線?

2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面四邊形中,等邊三角形,,以為折痕將折起,使得平面平面

(1)設的中點,求證:平面;

(2)若與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视